The Separability and Sequential Separability of the Space~$C(X)$
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 87-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following results are obtained: (1) a criterion for the separability of the space of continuous functions $C(X)$ with the set-open topology; (2) a criterion for the sequential separability of the space $C_{p}(A|X)$, where $A\subseteq X$; (3) an answer to Velichko's question of whether a set-theoretic condition on a metric space $X$ in the criterion for the sequential separability of $C_{p}(X)$ is essential.
Keywords: space of continuous functions, separability, sequential separability, set-open topology.
@article{MZM_2018_104_1_a8,
     author = {A. V. Osipov},
     title = {The {Separability} and {Sequential} {Separability} of the {Space~}$C(X)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a8/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - The Separability and Sequential Separability of the Space~$C(X)$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 87
EP  - 98
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a8/
LA  - ru
ID  - MZM_2018_104_1_a8
ER  - 
%0 Journal Article
%A A. V. Osipov
%T The Separability and Sequential Separability of the Space~$C(X)$
%J Matematičeskie zametki
%D 2018
%P 87-98
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a8/
%G ru
%F MZM_2018_104_1_a8
A. V. Osipov. The Separability and Sequential Separability of the Space~$C(X)$. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 87-98. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a8/

[1] A. V. Osipov, “Topological-algebraic properties of function spaces with set-open topologies”, Topology Appl., 159:3 (2012), 800–805 | DOI | MR | Zbl

[2] A. V. Osipov, “O svoistvakh tipa polnoty $C$-kompaktno-otkrytoi topologii na $C(X)$”, Tr. IMM UrO RAN, 18, no. 2, 2012, 191–198

[3] A. V. Osipov, “Algebraicheskie struktury na prostranstve nepreryvnykh otobrazhenii”, Vestn. Tomskogo gos. un-ta. Matem., mekh., 2012, no. 1, 47–53

[4] A. V. Osipov, “Sopryazhennoe prostranstvo k $C_{rc}(X)$”, Vestn. Udmurtskogo un-ta. Matem. Mekh. Kompyuternye nauki, 2012, no. 1, 41–49 | Zbl

[5] A. V. Osipov, “The $C$-compact-open topology on function spaces”, Topology Appl., 159:13 (2012), 3059–3066 | DOI | MR | Zbl

[6] A. V. Osipov, “The set-open topology”, Topology Proc., 37 (2011), 205–217 | MR | Zbl

[7] M. O. Asanov, Prostranstva nepreryvnykh otobrazhenii, Dis. $\dots$ kand. fiz.-matem. nauk, Sverdlovsk, 1980

[8] A. V. Osipov, A. V. Kosolobov, “O sekventsialno-kompaktno-otkrytoi topologii”, Vestn. Udmurtskogo un-ta. Matem. Mekh. Kompyuternye nauki, 2011, no. 3, 75–84 | Zbl

[9] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[10] N. Noble, “The density character of function spaces”, Proc. Amer. Math. Soc., 42:1 (1974), 228–233 | DOI | MR | Zbl

[11] P. Gartside, J. T. H. Lo, A. Marsh, “Sequential density”, Topology Appl., 130:1 (2003), 75–86 | DOI | MR | Zbl

[12] N. V. Velichko, “O sekventsialnoi separabelnosti”, Matem. zametki, 78:5 (2005), 652–657 | DOI | MR | Zbl

[13] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl

[14] A. W. Miller, “On the length of Borel hierarchies”, Ann. Math. Logic, 16:3 (1979), 233–267 | DOI | MR | Zbl