Solving Systems of Linear Equations with Normal Coefficient Matrices and the Degree of the Minimal Polyanalytic Polynomial
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 56-61
Cet article a éte moissonné depuis la source Math-Net.Ru
The generalized Lanczos process applied to a normal matrix $A$ builds up a condensed form of $A$, which can be described as a band matrix with slowly growing bandwidth. For certain classes of normal matrices, the bandwidth turns out to be constant. It is shown that, in such cases, the bandwidth is determined by the degree of the minimal polyanalytic polynomial of $A$. It was in relation to the generalized Lanczos process that M. Huhtanen introduced the concept of the minimal polyanalytic polynomial of a normal matrix.
Mots-clés :
normal matrix, band matrix, minimal polyanalytic polynomial.
Keywords: generalized Lanczos process, condensed form
Keywords: generalized Lanczos process, condensed form
@article{MZM_2018_104_1_a5,
author = {S. D. Ikramov},
title = {Solving {Systems} of {Linear} {Equations} with {Normal} {Coefficient} {Matrices} and the {Degree} of the {Minimal} {Polyanalytic} {Polynomial}},
journal = {Matemati\v{c}eskie zametki},
pages = {56--61},
year = {2018},
volume = {104},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a5/}
}
TY - JOUR AU - S. D. Ikramov TI - Solving Systems of Linear Equations with Normal Coefficient Matrices and the Degree of the Minimal Polyanalytic Polynomial JO - Matematičeskie zametki PY - 2018 SP - 56 EP - 61 VL - 104 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a5/ LA - ru ID - MZM_2018_104_1_a5 ER -
S. D. Ikramov. Solving Systems of Linear Equations with Normal Coefficient Matrices and the Degree of the Minimal Polyanalytic Polynomial. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a5/
[1] Yu. Saad, Iteratsionnye metody dlya razrezhennykh lineinykh sistem, T. 1, Izd-vo Mosk. un-ta, M., 2013 | MR | Zbl
[2] M. Huhtanen, “Orthogonal polyanalytic polynomials and normal matrices”, Math. Comp., 72:241 (2002), 355–373 | DOI | MR
[3] L. Elsner, Kh. D. Ikramov, “On a condensed form for normal matrices under finite sequences of elementary unitary similarities”, Linear Algebra Appl., 254 (1997), 79–98 | DOI | MR | Zbl