Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_1_a5, author = {S. D. Ikramov}, title = {Solving {Systems} of {Linear} {Equations} with {Normal} {Coefficient} {Matrices} and the {Degree} of the {Minimal} {Polyanalytic} {Polynomial}}, journal = {Matemati\v{c}eskie zametki}, pages = {56--61}, publisher = {mathdoc}, volume = {104}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a5/} }
TY - JOUR AU - S. D. Ikramov TI - Solving Systems of Linear Equations with Normal Coefficient Matrices and the Degree of the Minimal Polyanalytic Polynomial JO - Matematičeskie zametki PY - 2018 SP - 56 EP - 61 VL - 104 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a5/ LA - ru ID - MZM_2018_104_1_a5 ER -
%0 Journal Article %A S. D. Ikramov %T Solving Systems of Linear Equations with Normal Coefficient Matrices and the Degree of the Minimal Polyanalytic Polynomial %J Matematičeskie zametki %D 2018 %P 56-61 %V 104 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a5/ %G ru %F MZM_2018_104_1_a5
S. D. Ikramov. Solving Systems of Linear Equations with Normal Coefficient Matrices and the Degree of the Minimal Polyanalytic Polynomial. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a5/
[1] Yu. Saad, Iteratsionnye metody dlya razrezhennykh lineinykh sistem, T. 1, Izd-vo Mosk. un-ta, M., 2013 | MR | Zbl
[2] M. Huhtanen, “Orthogonal polyanalytic polynomials and normal matrices”, Math. Comp., 72:241 (2002), 355–373 | DOI | MR
[3] L. Elsner, Kh. D. Ikramov, “On a condensed form for normal matrices under finite sequences of elementary unitary similarities”, Linear Algebra Appl., 254 (1997), 79–98 | DOI | MR | Zbl