On a Kantorovich Problem with a Density Constraint
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 45-55

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kantorovich optimal transport problem with a density constraint on measures on an infinite-dimensional space is considered. In this setting, the admissible transport plan is nonnegative and majorized by a given constraint-function. The existence and the uniqueness of a solution of this problem are proved.
Keywords: Kantorovich problem, constrained problem, infinite-dimensional analysis.
Mots-clés : optimal transport
@article{MZM_2018_104_1_a4,
     author = {A. N. Doledenok},
     title = {On a {Kantorovich} {Problem} with a {Density} {Constraint}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a4/}
}
TY  - JOUR
AU  - A. N. Doledenok
TI  - On a Kantorovich Problem with a Density Constraint
JO  - Matematičeskie zametki
PY  - 2018
SP  - 45
EP  - 55
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a4/
LA  - ru
ID  - MZM_2018_104_1_a4
ER  - 
%0 Journal Article
%A A. N. Doledenok
%T On a Kantorovich Problem with a Density Constraint
%J Matematičeskie zametki
%D 2018
%P 45-55
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a4/
%G ru
%F MZM_2018_104_1_a4
A. N. Doledenok. On a Kantorovich Problem with a Density Constraint. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a4/