Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_1_a4, author = {A. N. Doledenok}, title = {On a {Kantorovich} {Problem} with a {Density} {Constraint}}, journal = {Matemati\v{c}eskie zametki}, pages = {45--55}, publisher = {mathdoc}, volume = {104}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a4/} }
A. N. Doledenok. On a Kantorovich Problem with a Density Constraint. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a4/
[1] L. V. Kantorovich, “O peremeschenii mass”, Dokl. AN SSSR, 37 (1942), 199–201 | MR
[2] L. V. Kantorovich, “Ob odnoi probleme Monzha”, UMN, 3:2 (1948), 225–226
[3] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (407) (2012), 3–110 | DOI | MR | Zbl
[4] V. I. Bogachev, Measure Theory, Vol. I, II, Springer-Verlag, Berlin, 2007 | MR | Zbl
[5] L. Ambrosio, “Lecture notes on optimal transport problems”, Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math., 1812, Springer-Verlag, Berlin, 2003, 1–52 | DOI | MR | Zbl
[6] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., 2062, Springer-Verlag, Berlin, 2011, 1–155 | DOI | MR
[7] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005 | MR
[8] L. C. Evans, “Partial differential equations and Monge–Kantorovich mass transfer”, Current Developments in Mathematics, Intern. Press, Boston, MA, 1997, 65–126 | MR
[9] W. Gangbo, R. J. McCann, “The geometry of optimal transportation”, Acta Math., 177:2 (1996), 113–161 | DOI | MR | Zbl
[10] R. J. McCann, N. Guillen, “Five lectures on optimal transportation: geometry, regularity and applications”, Analysis and Geometry of Metric Measure Spaces, CRM Proc. Lecture Notes, 56, Amer. Math. Soc., Providence, RI, 2013, 145–180 | MR | Zbl
[11] S. T. Rachev, L. Rüschendorf, Mass Transportation Problems, Vol. I, II, Probab. Appl., Springer-Verlag, New York, 1998 | MR | MR
[12] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR
[13] C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, New York, 2009 | DOI | MR
[14] J. Korman, R. J. McCann, “Optimal transportation with capacity constraints”, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521 | DOI | MR | Zbl
[15] J. Korman, R. J. McCann, “Insights into capacity constrained optimal transport”, Proc. Natl. Acad. Sci. USA, 110:25 (2013), 10064–10067 | DOI
[16] J. Korman, R. J. McCann, C. Seis, “Dual potentials for capacity constrained optimal transport”, Calc. Var. Partial Differential Equations, 54:1 (2015), 573–584 | DOI | MR | Zbl
[17] J. Korman, R. J. McCann, C. Seis, “An elementary approach to linear programming duality with application to capacity constrained transport”, J. Convex Anal., 22:3 (2015), 797–808 | MR | Zbl
[18] D. A. Zaev, “O zadache Monzha–Kantorovicha s dopolnitelnymi lineinymi ogranicheniyami”, Matem. zametki, 98:5 (2015), 664–683 | DOI | MR | Zbl