Solutions of Hom-Yang--Baxter Equation from Monoidal Hom-(Co)Algebra Structures
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 131-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing solutions of the Hom-Yang–Baxter equations is presented. Thus methods yields a so-called $\alpha$-involutory solution of the Hom-Yang–Baxter equation for every monoidal Hom-(co)algebra structure on a space. Characterizations for solutions of Hom-Yang–Baxter equations arising from monoidal Hom-(co)algebra structures are given, and a monoidal Hom-(co)algebra structure which produces such a solution is constructed.
Keywords: monoidal Hom-algebra, monoidal Hom-coalgebra, Hom-Yang–Baxter equation.
@article{MZM_2018_104_1_a11,
     author = {Zhengming Jiao and Gongyu Huang},
     title = {Solutions of {Hom-Yang--Baxter} {Equation} from {Monoidal} {Hom-(Co)Algebra} {Structures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {131--147},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a11/}
}
TY  - JOUR
AU  - Zhengming Jiao
AU  - Gongyu Huang
TI  - Solutions of Hom-Yang--Baxter Equation from Monoidal Hom-(Co)Algebra Structures
JO  - Matematičeskie zametki
PY  - 2018
SP  - 131
EP  - 147
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a11/
LA  - ru
ID  - MZM_2018_104_1_a11
ER  - 
%0 Journal Article
%A Zhengming Jiao
%A Gongyu Huang
%T Solutions of Hom-Yang--Baxter Equation from Monoidal Hom-(Co)Algebra Structures
%J Matematičeskie zametki
%D 2018
%P 131-147
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a11/
%G ru
%F MZM_2018_104_1_a11
Zhengming Jiao; Gongyu Huang. Solutions of Hom-Yang--Baxter Equation from Monoidal Hom-(Co)Algebra Structures. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 131-147. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a11/

[1] C. Kassel, Quantum Groups, Grad. Texts in Math., 155, Springer-Verlag, New York, 1995 | MR | Zbl

[2] F. Nichita, “Self-inverse Yang–Baxter operators from (co)algebra structures”, J. Algebra, 218:2 (1999), 738–759 | DOI | MR | Zbl

[3] A. Makhlouf, S. D. Silvestrov, “Hom-algebra structures”, J. Gen. Lie Theory Appl., 2 (2008), 52–64 | DOI | MR

[4] S. Caenepeel, I. Goyvaerts, “Monoidal Hom-Hopf algebras”, Comm. Algebra, 39:6 (2011), 2216–2240 | DOI | MR | Zbl

[5] L. Liu, B. L. Shen, “Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras”, J. Math. Phys., 55:3 (2014), 031701 | DOI | MR

[6] Y. Frégier, A. Gohr, S. Silvestrov, “Unital algebras of Hom-associative type and surjective or injective twistings”, J. Gen. Lie. Theory Appl, 3:4 (2009), 285–295 | DOI | MR | Zbl

[7] A. Makhlouf, S. Silvestrov, “Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras”, Generalized Lie Theory in Mathematics, Physics and Beyond, Springer-Verlag, Berlin, 2009, 189–206 | MR | Zbl

[8] A. Makhlouf, S. Silvestrov, “Hom-algebras and Hom-coalgebras”, J. Algebra Appl., 9:4 (2010), 553–589 | DOI | MR | Zbl

[9] A. Makhlouf, F. Panaite, “Yetter–Drinfeld modules for Hom-bialgebras”, J. Math. Phys., 55:1 (2014), 013501 | DOI | MR

[10] A. Gohr, “On Hom-algebras with surjective twisting”, J. Algebra, 324:7 (2010), 1483–1491 | DOI | MR | Zbl

[11] D. Yau, “Hom-Algebras and Homology”, J. Lie Theory, 19:2 (2009), 409–421 | MR | Zbl

[12] D. Yau, “Hom-bialgebras and comodule Hom-algebras”, Int. Electron J. Algebra, 8 (2010), 45–64 | MR | Zbl

[13] D. Yau, “The Hom-Yang–Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras”, J. Phys. A. Math. Theor., 42:16 (2009), 165202 | DOI | MR

[14] D. Yau, “Hom-quantum groups. I. Quasi-triangular Hom-bialgebras”, J. Phys. A. Math. Theor., 45:6 (2012), 065203 | MR

[15] D. Yau, Hom-Quantum Groups. II. Cobraided Hom-Bialgebras and Hom-Quantum Geometry, 2009, arXiv: 0907.1880

[16] D. Yau, Hom-Quantum Groups. III. Representations and Module Hom-Algebras, 2009, arXiv: 0911.5402

[17] D. Yau, The Classical Hom-Yang–Baxter Equation and Hom-Lie Bialgebras, 2009, arXiv: 0905.1890

[18] D. Yau, “The Hom-Yang–Baxter equation and Hom-Lie algebras”, J. Math. Phys., 52:5 (2011), 053502 | DOI | MR

[19] M. E. Sweedler, Hopf Algebras, W. A. Benjamin, New York, 1969 | MR