Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_1_a10, author = {F. S. Stonyakin}, title = {A {Sublinear} {Analog} of the {Banach--Mazur} {Theorem} in {Separable} {Convex} {Cones} with {Norm}}, journal = {Matemati\v{c}eskie zametki}, pages = {118--130}, publisher = {mathdoc}, volume = {104}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a10/} }
F. S. Stonyakin. A Sublinear Analog of the Banach--Mazur Theorem in Separable Convex Cones with Norm. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 118-130. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a10/
[1] H. Rådström, “An embedding theorem for space of convex sets”, Proc. Amer. Math. Soc., 3 (1952), 165–169 | MR
[2] K. Keimel, W. Roth, Ordered Cones and Approximation, Lecture Notes in Math., 1517, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[3] W. Roth, “Hahn–Banach type theorems for locally convex cones”, J. Austral. Math. Soc. Ser. A, 68:1 (2000), 104–125 | DOI | MR | Zbl
[4] P. Selinger, “Towards a semantics for higher-order quantum computation”, Proceedings of the 2nd International Workshop on Quantum Programming Languages, TUCS General Publication, 33, Turku Centre for Computer Science, Turku, 2004, 127–143
[5] I. V. Orlov, “Teoremy ob obratnoi i neyavnoi funktsiyakh v klasse subgladkikh otobrazhenii”, Matem. zametki, 99:4 (2016), 631–634 | DOI | MR | Zbl
[6] L. M. García-Raffi, S. Romaguera, E. A. Sánchez-Pérez, O. Valero, “Metrizability of the unit ball of the dual of a quasi-normed cone”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7:2 (2004), 483–492 | MR | Zbl
[7] S. Romaguera, E. A. Sánchez-Pérez, O. Valero, “A characterization of generalized monotone normed cones”, Acta Math. Sin. (Engl. Ser.), 23:6 (2007), 1067–1074 | DOI | MR | Zbl
[8] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi. Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie, Nauka, M., 1973 | MR | Zbl
[9] E. P. Dolzhenko, E. A. Sevastyanov, “Approksimatsiya so znakochuvstvitelnym vesom (ustoichivost, prilozheniya k teorii uzhei i khausdorfovym approksimatsiyam)”, Izv. RAN. Ser. matem., 63:3 (1999), 77–118 | DOI | MR | Zbl
[10] P. A. Borodin, “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnoi normoi i ee prilozheniya v vypuklom analize”, Matem. zametki, 69:3 (2001), 329–337 | DOI | MR | Zbl
[11] A. R. Alimov, “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnym rasstoyaniem”, UMN, 58:2 (350) (2003), 159–160 | DOI | MR | Zbl
[12] G. E. Ivanov, M. S. Lopushanski, “O korrektnosti zadach approksimatsii i optimizatsii dlya slabo vypuklykh mnozhestv i funktsii”, Fundament. i prikl. matem., 18:5 (2013), 89–118 | MR
[13] G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR | Zbl
[14] S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhauser Verlag, Basel, 2013 | MR | Zbl
[15] F. S. Stonyakin, “An analogue of the Hahn–Banach theorem for functionals on abstract convex cones”, Eurasian Math. J., 7:3 (2016), 89–99 | MR
[16] L. A. Lyusternik, V. I. Sobolev, Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR | Zbl
[17] F. S. Stonyakin, “Applications of anticompact sets to analogs of Denjoy–Young–Saks and Lebesgue theorems”, Eurasian Math. J., 6:1 (2015), 115–122 | MR
[18] F. S. Stonyakin, “Analogi teoremy Shaudera s ispolzovaniem antikompaktov”, Matem. zametki, 99:6 (2016), 950–953 | DOI | MR | Zbl
[19] F. S. Stonyakin, “Antikompakty i ikh prilozheniya k analogam teorem Lyapunova i Lebega v prostranstvakh Freshe”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 53, RUDN, M., 2014, 155–176