Uniqueness Theorems for Generalized Haar Systems
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 11-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

A uniqueness theorem and a recovery theorem for the coefficients of series in generalized Haar systems are proved under the assumption that the series converge in measure and satisfy a certain necessary condition on the distribution function of the majorant of partial sums.
Keywords: generalized Haar system, Fourier series, $A$-integral, uniqueness theorem.
@article{MZM_2018_104_1_a1,
     author = {G. G. Gevorkyan and K. A. Navasardyan},
     title = {Uniqueness {Theorems} for {Generalized} {Haar} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--24},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
AU  - K. A. Navasardyan
TI  - Uniqueness Theorems for Generalized Haar Systems
JO  - Matematičeskie zametki
PY  - 2018
SP  - 11
EP  - 24
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a1/
LA  - ru
ID  - MZM_2018_104_1_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%A K. A. Navasardyan
%T Uniqueness Theorems for Generalized Haar Systems
%J Matematičeskie zametki
%D 2018
%P 11-24
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a1/
%G ru
%F MZM_2018_104_1_a1
G. G. Gevorkyan; K. A. Navasardyan. Uniqueness Theorems for Generalized Haar Systems. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 11-24. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a1/

[1] N. Ya. Vilenkin, “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 363–400 | MR | Zbl

[2] G. G. Gevorkyan, K. A. Navasardyan, “On a summation method for Vilenkin and generalized Haar systems”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:1 (2017), 13–17 | Zbl

[3] V. V. Kostin, “K voprosu o vosstanovlenii koeffitsientov ryadov po nekotorym ortogonalnym sistemam funktsii”, Matem. zametki, 73:5 (2003), 704–723 | DOI | MR | Zbl

[4] V. V. Kostin, “Obobschenie teoremy L. A. Balashova o podryadakh ryada Fure–Khaara”, Matem. zametki, 76:5 (2004), 740–747 | DOI | MR | Zbl

[5] G. G. Gevorkyan, “O edinstvennosti additivnykh funktsii dvoichnykh kubov i ryadov po sisteme Khaara”, Izv. NAN Armenii. Ser. matem., 30:5 (1995), 7–21 | MR | Zbl

[6] G. G. Gevorkyan, K. A. Navasardyan, “Ob odnom metode summirovaniya dlya obobschennoi sistemy Khaara i sistemy Vilenkina”, Dokl. NAN Armenii, 117:1 (2017), 20–25 | MR

[7] G. G. Gevorkyan, “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 184:11 (1993), 93–130 | MR | Zbl

[8] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[9] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl