Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_1_a1, author = {G. G. Gevorkyan and K. A. Navasardyan}, title = {Uniqueness {Theorems} for {Generalized} {Haar} {Systems}}, journal = {Matemati\v{c}eskie zametki}, pages = {11--24}, publisher = {mathdoc}, volume = {104}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a1/} }
G. G. Gevorkyan; K. A. Navasardyan. Uniqueness Theorems for Generalized Haar Systems. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 11-24. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a1/
[1] N. Ya. Vilenkin, “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 363–400 | MR | Zbl
[2] G. G. Gevorkyan, K. A. Navasardyan, “On a summation method for Vilenkin and generalized Haar systems”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:1 (2017), 13–17 | Zbl
[3] V. V. Kostin, “K voprosu o vosstanovlenii koeffitsientov ryadov po nekotorym ortogonalnym sistemam funktsii”, Matem. zametki, 73:5 (2003), 704–723 | DOI | MR | Zbl
[4] V. V. Kostin, “Obobschenie teoremy L. A. Balashova o podryadakh ryada Fure–Khaara”, Matem. zametki, 76:5 (2004), 740–747 | DOI | MR | Zbl
[5] G. G. Gevorkyan, “O edinstvennosti additivnykh funktsii dvoichnykh kubov i ryadov po sisteme Khaara”, Izv. NAN Armenii. Ser. matem., 30:5 (1995), 7–21 | MR | Zbl
[6] G. G. Gevorkyan, K. A. Navasardyan, “Ob odnom metode summirovaniya dlya obobschennoi sistemy Khaara i sistemy Vilenkina”, Dokl. NAN Armenii, 117:1 (2017), 20–25 | MR
[7] G. G. Gevorkyan, “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 184:11 (1993), 93–130 | MR | Zbl
[8] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR
[9] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl