Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk
Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a function $h$ analytic in the unit disk $D$, we study the density in the space $A(D)$ of functions analytic inside $D$ of the set $S(h,E)$ of sums of the form $\sum_k\lambda_kh(\lambda_kz)$ with parameters $\lambda_k\in E$, where $E$ is a compact subset of $\overline D$. It is proved, in particular, that if the compact set $E$ “surrounds” the point $0$ and all Taylor coefficients of the function $h$ are nonzero, then $S(h,E)$ is dense in $A(D)$.
Keywords: approximation, analytic function, density, $h$-sum.
@article{MZM_2018_104_1_a0,
     author = {P. A. Borodin},
     title = {Approximation by {Sums} of the {Form} $\sum_k\lambda_kh(\lambda_kz)$ in the {Disk}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a0/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk
JO  - Matematičeskie zametki
PY  - 2018
SP  - 3
EP  - 10
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a0/
LA  - ru
ID  - MZM_2018_104_1_a0
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk
%J Matematičeskie zametki
%D 2018
%P 3-10
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a0/
%G ru
%F MZM_2018_104_1_a0
P. A. Borodin. Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk. Matematičeskie zametki, Tome 104 (2018) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2018_104_1_a0/