@article{MZM_2018_103_6_a8,
author = {T. Suzuki},
title = {Slope {Stability} for {Lines} on {Products} of {Fano} {Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {902--911},
year = {2018},
volume = {103},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a8/}
}
T. Suzuki. Slope Stability for Lines on Products of Fano Manifolds. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 902-911. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a8/
[1] J. Ross, R. Thomas, “An obstruction to the existence of constant scalar curvature Kähler metrics”, J. Differential Geom., 72:3 (2006), 429–466 | DOI | MR | Zbl
[2] J.-M. Hwang, H. Kim, Y. Lee, J. Park, “Slopes of smooth curve on Fano manifolds”, Bull. London Math. Soc., 43:5 (2011), 827–839 | DOI | MR | Zbl
[3] K. Fujita, “Fano manifolds which are not slope stable along curves”, Proc. Japan Acad. Ser. A Math. Sci., 87:10 (2011), 199–202 | DOI | MR | Zbl
[4] J. Ross, “Unstable products of smooth curves”, Invent. Math., 165:1 (2006), 153–162 | DOI | MR | Zbl
[5] S. Kobayashi, T. Ochiai, “Characterizations of complex projective spaces and hyperquadrics”, J. Math. Kyoto Univ., 13 (1973), 31–47 | DOI | MR | Zbl
[6] J. Kollár, Y. Miyaoka, S. Mori, “Rational curves on Fano varieties”, Classification of Irregular Varieties, Lecture Notes in Math., 1515, Springer, Berlin, 1992, 100–105 | DOI | MR | Zbl