Slope Stability for Lines on Products of Fano Manifolds
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 902-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the slope stability of products $X$ of two Fano manifolds with Picard number 1 which are covered by lines. We show that such manifolds $X$ are slope stable with respect to lines for any polarization except $X=\mathbb P^1\times \mathbb P^{n-1}$.
Keywords: slope stability, Fano manifolds, covered by lines, Seshadri constant.
@article{MZM_2018_103_6_a8,
     author = {T. Suzuki},
     title = {Slope {Stability} for {Lines} on {Products} of {Fano} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {902--911},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a8/}
}
TY  - JOUR
AU  - T. Suzuki
TI  - Slope Stability for Lines on Products of Fano Manifolds
JO  - Matematičeskie zametki
PY  - 2018
SP  - 902
EP  - 911
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a8/
LA  - ru
ID  - MZM_2018_103_6_a8
ER  - 
%0 Journal Article
%A T. Suzuki
%T Slope Stability for Lines on Products of Fano Manifolds
%J Matematičeskie zametki
%D 2018
%P 902-911
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a8/
%G ru
%F MZM_2018_103_6_a8
T. Suzuki. Slope Stability for Lines on Products of Fano Manifolds. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 902-911. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a8/

[1] J. Ross, R. Thomas, “An obstruction to the existence of constant scalar curvature Kähler metrics”, J. Differential Geom., 72:3 (2006), 429–466 | DOI | MR | Zbl

[2] J.-M. Hwang, H. Kim, Y. Lee, J. Park, “Slopes of smooth curve on Fano manifolds”, Bull. London Math. Soc., 43:5 (2011), 827–839 | DOI | MR | Zbl

[3] K. Fujita, “Fano manifolds which are not slope stable along curves”, Proc. Japan Acad. Ser. A Math. Sci., 87:10 (2011), 199–202 | DOI | MR | Zbl

[4] J. Ross, “Unstable products of smooth curves”, Invent. Math., 165:1 (2006), 153–162 | DOI | MR | Zbl

[5] S. Kobayashi, T. Ochiai, “Characterizations of complex projective spaces and hyperquadrics”, J. Math. Kyoto Univ., 13 (1973), 31–47 | DOI | MR | Zbl

[6] J. Kollár, Y. Miyaoka, S. Mori, “Rational curves on Fano varieties”, Classification of Irregular Varieties, Lecture Notes in Math., 1515, Springer, Berlin, 1992, 100–105 | DOI | MR | Zbl