Two-Dimensional Shock Waves for a Model Problem
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 875-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of nonclassical (two-dimensional) shock waves in Riemann's problem is proved for a modification of the system of shallow water equations.
Mots-clés : Riemann–Hugoniot catastrophe
Keywords: nonstrictly hyperbolic system in the sense of Petrovskii, two-component modification of the system of shallow water equations.
@article{MZM_2018_103_6_a6,
     author = {V. V. Palin},
     title = {Two-Dimensional {Shock} {Waves} for a {Model} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {875--883},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a6/}
}
TY  - JOUR
AU  - V. V. Palin
TI  - Two-Dimensional Shock Waves for a Model Problem
JO  - Matematičeskie zametki
PY  - 2018
SP  - 875
EP  - 883
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a6/
LA  - ru
ID  - MZM_2018_103_6_a6
ER  - 
%0 Journal Article
%A V. V. Palin
%T Two-Dimensional Shock Waves for a Model Problem
%J Matematičeskie zametki
%D 2018
%P 875-883
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a6/
%G ru
%F MZM_2018_103_6_a6
V. V. Palin. Two-Dimensional Shock Waves for a Model Problem. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 875-883. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a6/

[1] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Mir, M., 1979 | MR

[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR

[3] L. K. Evans, Uravneniya s chastnymi proizvodnymi, Universitetskaya seriya, 7, Tamara Rozhkovskaya, Novosibirsk, 2003 | MR | Zbl

[4] P. D. Laks, Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[5] V. V. Palin, E. V. Radkevich, “On the Riemann–Hugoniot catastrophe”, Russ. J. Math. Phys., 22:2 (2015), 227–236 | MR | Zbl

[6] V. V. Palin, E. V. Radkevich, “O povedenii stabiliziruyuschikhsya reshenii dlya uravneniya Rikkati”, Tr. sem. im. I. G. Petrovskogo, 31, Izd-vo Mosk. un-ta, M., 2016, 110–133