Keywords: nonstrictly hyperbolic system in the sense of Petrovskii, two-component modification of the system of shallow water equations.
@article{MZM_2018_103_6_a6,
author = {V. V. Palin},
title = {Two-Dimensional {Shock} {Waves} for a {Model} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {875--883},
year = {2018},
volume = {103},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a6/}
}
V. V. Palin. Two-Dimensional Shock Waves for a Model Problem. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 875-883. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a6/
[1] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Mir, M., 1979 | MR
[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR
[3] L. K. Evans, Uravneniya s chastnymi proizvodnymi, Universitetskaya seriya, 7, Tamara Rozhkovskaya, Novosibirsk, 2003 | MR | Zbl
[4] P. D. Laks, Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010
[5] V. V. Palin, E. V. Radkevich, “On the Riemann–Hugoniot catastrophe”, Russ. J. Math. Phys., 22:2 (2015), 227–236 | MR | Zbl
[6] V. V. Palin, E. V. Radkevich, “O povedenii stabiliziruyuschikhsya reshenii dlya uravneniya Rikkati”, Tr. sem. im. I. G. Petrovskogo, 31, Izd-vo Mosk. un-ta, M., 2016, 110–133