Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_6_a4, author = {I. D. Kan}, title = {Linear {Congruences} in {Continued} {Fractions} on {Finite} {Alphabets}}, journal = {Matemati\v{c}eskie zametki}, pages = {853--862}, publisher = {mathdoc}, volume = {103}, number = {6}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a4/} }
I. D. Kan. Linear Congruences in Continued Fractions on Finite Alphabets. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 853-862. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a4/
[1] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[2] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl
[3] D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl
[4] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Théorie des nombres, de Gruyter, Berlin, 1989, 371–385 | MR | Zbl
[5] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR | Zbl
[6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Publ., Reading, MA, 1994 | MR
[7] D. A. Frolenkov, I. D. Kan, Reinforcement of Bourgain–Kontorovich's Theorem by Elementary Methods, arXiv: 1207.4546