Linear Congruences in Continued Fractions on Finite Alphabets
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 853-862.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear homogeneous congruence $ay\equiv bY \,(\operatorname{mod}{q})$ is considered and an order-sharp upper bound for the number of its solutions is proved. Here $a$$b$, and $q$ are given jointly coprime numbers and $y$ and $Y$ are coprime variables in a given closed interval such that the number $y/Y$ can be expanded in a continued fraction with partial quotients from some alphabet $\mathbf{A}\subseteq\mathbb{N}$. For $\mathbf{A}=\mathbb{N}$ (and without the assumption that $y$ and $Y$ are coprime), a similar problem was solved by N. M. Korobov.
Keywords: linear congruence, continued fraction.
@article{MZM_2018_103_6_a4,
     author = {I. D. Kan},
     title = {Linear {Congruences} in {Continued} {Fractions} on {Finite} {Alphabets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {853--862},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a4/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - Linear Congruences in Continued Fractions on Finite Alphabets
JO  - Matematičeskie zametki
PY  - 2018
SP  - 853
EP  - 862
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a4/
LA  - ru
ID  - MZM_2018_103_6_a4
ER  - 
%0 Journal Article
%A I. D. Kan
%T Linear Congruences in Continued Fractions on Finite Alphabets
%J Matematičeskie zametki
%D 2018
%P 853-862
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a4/
%G ru
%F MZM_2018_103_6_a4
I. D. Kan. Linear Congruences in Continued Fractions on Finite Alphabets. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 853-862. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a4/

[1] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl

[2] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl

[3] D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl

[4] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Théorie des nombres, de Gruyter, Berlin, 1989, 371–385 | MR | Zbl

[5] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR | Zbl

[6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Publ., Reading, MA, 1994 | MR

[7] D. A. Frolenkov, I. D. Kan, Reinforcement of Bourgain–Kontorovich's Theorem by Elementary Methods, arXiv: 1207.4546