On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 841-852

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in Euclidean $n$-space, $n\ge 2$, the weighted capacity (with Muckenhoupt weight) of a condenser with a finite number of plates is equal to the weighted modulus of the corresponding configuration of finitely many families of curves. For $n=2$, in the conformal case, this equality solves a problem posed by Dubinin.
Keywords: capacity of a condenser, Muckenhoupt weight, generalized condenser
Mots-clés : modulus of a configuration.
@article{MZM_2018_103_6_a3,
     author = {Yu. V. Dymchenko and V. A. Shlyk},
     title = {On a {Problem} of {Dubinin} for the {Capacity} of a {Condenser} with a {Finite} {Number} of {Plates}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {841--852},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a3/}
}
TY  - JOUR
AU  - Yu. V. Dymchenko
AU  - V. A. Shlyk
TI  - On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates
JO  - Matematičeskie zametki
PY  - 2018
SP  - 841
EP  - 852
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a3/
LA  - ru
ID  - MZM_2018_103_6_a3
ER  - 
%0 Journal Article
%A Yu. V. Dymchenko
%A V. A. Shlyk
%T On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates
%J Matematičeskie zametki
%D 2018
%P 841-852
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a3/
%G ru
%F MZM_2018_103_6_a3
Yu. V. Dymchenko; V. A. Shlyk. On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 841-852. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a3/