On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 841-852
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, in Euclidean $n$-space, $n\ge 2$, the weighted capacity (with Muckenhoupt weight) of a condenser with a finite number of plates is equal to the weighted modulus of the corresponding configuration of finitely many families of curves. For $n=2$, in the conformal case, this equality solves a problem posed by Dubinin.
Keywords:
capacity of a condenser, Muckenhoupt weight, generalized condenser
Mots-clés : modulus of a configuration.
Mots-clés : modulus of a configuration.
@article{MZM_2018_103_6_a3,
author = {Yu. V. Dymchenko and V. A. Shlyk},
title = {On a {Problem} of {Dubinin} for the {Capacity} of a {Condenser} with a {Finite} {Number} of {Plates}},
journal = {Matemati\v{c}eskie zametki},
pages = {841--852},
publisher = {mathdoc},
volume = {103},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a3/}
}
TY - JOUR AU - Yu. V. Dymchenko AU - V. A. Shlyk TI - On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates JO - Matematičeskie zametki PY - 2018 SP - 841 EP - 852 VL - 103 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a3/ LA - ru ID - MZM_2018_103_6_a3 ER -
Yu. V. Dymchenko; V. A. Shlyk. On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 841-852. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a3/