Stability Criterion for Systems of Two First-Order Linear Ordinary Differential Equations
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 831-840.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of Riccati's equation is applied to find a stability criterion for systems of two first-order linear ordinary differential equations. The obtained result is compared for a particular example with results obtained by the Lyapunov and Bogdanov methods, by using estimates of solutions of systems in terms of the Losinskii logarithmic norms, and by the freezing method.
Mots-clés : Riccati's equation, normal and limit solutions
Keywords: Lyapunov stability, instability, logarithmic norms.
@article{MZM_2018_103_6_a2,
     author = {G. A. Grigoryan},
     title = {Stability {Criterion} for {Systems} of {Two} {First-Order} {Linear} {Ordinary} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {831--840},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a2/}
}
TY  - JOUR
AU  - G. A. Grigoryan
TI  - Stability Criterion for Systems of Two First-Order Linear Ordinary Differential Equations
JO  - Matematičeskie zametki
PY  - 2018
SP  - 831
EP  - 840
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a2/
LA  - ru
ID  - MZM_2018_103_6_a2
ER  - 
%0 Journal Article
%A G. A. Grigoryan
%T Stability Criterion for Systems of Two First-Order Linear Ordinary Differential Equations
%J Matematičeskie zametki
%D 2018
%P 831-840
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a2/
%G ru
%F MZM_2018_103_6_a2
G. A. Grigoryan. Stability Criterion for Systems of Two First-Order Linear Ordinary Differential Equations. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 831-840. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a2/

[1] L. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M., 1950 | MR

[2] L. Chezari, Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964 | MR

[3] L. Ya. Adrianova, Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo Sankt-Peterburgskogo un-ta, SPb., 1992 | MR

[4] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[5] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954 | MR | Zbl

[6] V. I. Burdina, “Ob ogranichennosti reshenii sistemy differentsialnykh uravnenii”, Dokl. AN SSSR, 93:4 (1953), 603–606 | MR | Zbl

[7] G. A. Grigoryan, “Ob ustoichivosti sistem dvukh lineinykh obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Differents. uravneniya, 51:4 (2015), 436–444 | DOI | MR | Zbl

[8] N. V. Mak-Lakhlan, Teoriya i prilozhenie funktsii Mate, IL, M., 1953 | MR

[9] L. H. Erbe, “Stability results for periodic second order linear differential equations”, Proc. Amer. Math. Soc., 93:2 (1985), 272–276 | DOI | MR | Zbl

[10] I. Knovles, “On stability conditions for second-order linear differential equations”, J. Differential Equations, 34:2 (1979), 179–203 | DOI | MR

[11] M. Ashordia, “Lyapunov stability of systems of linear generalized ordinary differential equations”, Comput. Math. Appl., 50:5-6 (2005), 957–982 | DOI | MR | Zbl

[12] R. Bellman, “On an application of a Banach–Steinhaus theorem to the study of the boundedness of solutions of nonlinear differential and difference equations”, Ann. of Math. (2), 49 (1948), 515–522 | DOI | MR | Zbl

[13] G. A. Grigoryan, “O dvukh priznakakh sravneniya dlya lineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 47:9 (2011), 1225–1240 | MR | Zbl

[14] G. A. Grigoryan, “O nekotorykh svoistvakh reshenii uravneniya Rikkati”, Izv. NAN Armenii. Matem., 42:4 (2007), 11–26 | MR | Zbl