Variational Principles in Nonlinear Analysis and Their Generalization
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 948-954.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Ekeland variational principle, Bishop–Phelps variational principle, Caristi-like generalized condition.
@article{MZM_2018_103_6_a12,
     author = {A. V. Arutyunov and S. E. Zhukovskii},
     title = {Variational {Principles} in {Nonlinear} {Analysis} and {Their} {Generalization}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {948--954},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskii
TI  - Variational Principles in Nonlinear Analysis and Their Generalization
JO  - Matematičeskie zametki
PY  - 2018
SP  - 948
EP  - 954
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/
LA  - ru
ID  - MZM_2018_103_6_a12
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskii
%T Variational Principles in Nonlinear Analysis and Their Generalization
%J Matematičeskie zametki
%D 2018
%P 948-954
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/
%G ru
%F MZM_2018_103_6_a12
A. V. Arutyunov; S. E. Zhukovskii. Variational Principles in Nonlinear Analysis and Their Generalization. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 948-954. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/

[1] R. R. Phelps, Adv. in Math., 13:1 (1974), 1–19 | DOI | MR | Zbl

[2] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003 | MR | Zbl

[3] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl

[4] A. D. Ioffe, V. M. Tikhomirov, Matem. zametki, 61:2 (1997), 305–311 | DOI | MR | Zbl

[5] V. N. Pavlenko, D. K. Potapov, Matem. zametki, 101:2 (2017), 247–261 | DOI | MR | Zbl

[6] A. V. Arutyunov, Optimalnoe upravlenie, Tr. MIAN, 291, MAIK «Nauka/Interperiodika», M., 2015, 30–44 | DOI | Zbl