Variational Principles in Nonlinear Analysis and Their Generalization
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 948-954

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Ekeland variational principle, Bishop–Phelps variational principle, Caristi-like generalized condition.
@article{MZM_2018_103_6_a12,
     author = {A. V. Arutyunov and S. E. Zhukovskii},
     title = {Variational {Principles} in {Nonlinear} {Analysis} and {Their} {Generalization}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {948--954},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskii
TI  - Variational Principles in Nonlinear Analysis and Their Generalization
JO  - Matematičeskie zametki
PY  - 2018
SP  - 948
EP  - 954
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/
LA  - ru
ID  - MZM_2018_103_6_a12
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskii
%T Variational Principles in Nonlinear Analysis and Their Generalization
%J Matematičeskie zametki
%D 2018
%P 948-954
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/
%G ru
%F MZM_2018_103_6_a12
A. V. Arutyunov; S. E. Zhukovskii. Variational Principles in Nonlinear Analysis and Their Generalization. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 948-954. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a12/