Summation of Fourier Series on the Infinite-Dimensional Torus
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 927-935.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the convergence of Fejér means for functions on the infinite-dimensional torus over cubes and rectangles are obtained, and a generalization of these results to the case of products of abstract measure spaces is proposed.
Keywords: Jessen system, convergence almost everywhere, infinite-dimensional torus, projective tensor product.
@article{MZM_2018_103_6_a10,
     author = {D. V. Fufaev},
     title = {Summation of {Fourier} {Series} on the {Infinite-Dimensional} {Torus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {927--935},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/}
}
TY  - JOUR
AU  - D. V. Fufaev
TI  - Summation of Fourier Series on the Infinite-Dimensional Torus
JO  - Matematičeskie zametki
PY  - 2018
SP  - 927
EP  - 935
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/
LA  - ru
ID  - MZM_2018_103_6_a10
ER  - 
%0 Journal Article
%A D. V. Fufaev
%T Summation of Fourier Series on the Infinite-Dimensional Torus
%J Matematičeskie zametki
%D 2018
%P 927-935
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/
%G ru
%F MZM_2018_103_6_a10
D. V. Fufaev. Summation of Fourier Series on the Infinite-Dimensional Torus. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 927-935. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/

[1] A. Zigmund, Trigonometricheskie ryady, T. 1,2, Mir, M., 1965 | MR | Zbl | Zbl

[2] B. Jessen, “The theory of integration in a space of an infinite number of dimensions”, Acta Math., 63:1 (1934), 249–323 | DOI | MR | Zbl

[3] N. N. Kholschevnikova, “Skhodimost po kubam ryadov Fure funktsii schetnogo mnozhestva peremennykh”, Trudy Mezhdunarodnoi letnei matematicheskoi shkoly S. B. Stechkina po teorii funktsii, Tulskii gos. un-t, Tula, 2007, 145–149

[4] S. S. Platonov, “O nekotorykh zadachakh teorii priblizheniya funktsii na beskonechnomernom tore: analogi teorem Dzheksona”, Algebra i analiz, 26:6 (2014), 99–120 | MR

[5] Ch. Berg, “Potential theory on the infinite-dimensional torus”, Invent. Math., 32:1 (1976), 49–100 | DOI | MR | Zbl

[6] R. Holley, D. W. Stroock, “Diffusions on an infinite-dimensional torus”, J. Funct. Anal., 42:1 (1981), 29–63 | DOI | MR | Zbl

[7] Th. J. S. Taylor, “On the Wiener semigroup and harmonic analysis on the infinite dimensional torus”, Acta Appl. Math., 10:2 (1987), 131–143 | MR | Zbl

[8] A. Bendikov, L. Saloff-Coste, “On the sample parts of diagonal Brownian motions on the infinite dimensional torus”, Ann. Inst. H. Poincaré Probab. Statist., 40:2 (2004), 227–254 | DOI | MR | Zbl

[9] N. N. Kholschevnikova, “Skhodimost trigonometricheskikh ryadov schetnogo chisla peremennykh”, Fundament. fiz.-matem. probl. i model. tekh.-tekhnol. sist., 10 (2007), 24–27

[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966 | MR

[11] D. V. Fufaev, “O skhodimosti proizvedenii napravlennostei operatorov”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 4, 23–33 | MR | Zbl

[12] M. I. Dyachenko, “O nekotorykh svoistvakh kratnykh ryadov i preobrazovanii Fure”, Teoriya funktsii, Tr. MIAN SSSR, 190, Nauka, M., 1989, 88–101 | MR | Zbl

[13] R. M. Trigub, “Obobschenie metoda Abelya–Puassona summirovaniya trigonometricheskikh ryadov Fure”, Matem. zametki, 96:3 (2014), 473–475 | DOI | MR | Zbl

[14] R. M. Trigub, “Summiruemost ryadov Fure pochti vsyudu s ukazaniem mnozhestva skhodimosti”, Matem. zametki, 100:1 (2016), 163–179 | DOI | MR | Zbl

[15] V. I. Bogachev, Osnovy teorii mery, T. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2006

[16] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 2. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Mir, M., 1975 | MR | Zbl

[17] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR | Zbl