Summation of Fourier Series on the Infinite-Dimensional Torus
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 927-935

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the convergence of Fejér means for functions on the infinite-dimensional torus over cubes and rectangles are obtained, and a generalization of these results to the case of products of abstract measure spaces is proposed.
Keywords: Jessen system, convergence almost everywhere, infinite-dimensional torus, projective tensor product.
@article{MZM_2018_103_6_a10,
     author = {D. V. Fufaev},
     title = {Summation of {Fourier} {Series} on the {Infinite-Dimensional} {Torus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {927--935},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/}
}
TY  - JOUR
AU  - D. V. Fufaev
TI  - Summation of Fourier Series on the Infinite-Dimensional Torus
JO  - Matematičeskie zametki
PY  - 2018
SP  - 927
EP  - 935
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/
LA  - ru
ID  - MZM_2018_103_6_a10
ER  - 
%0 Journal Article
%A D. V. Fufaev
%T Summation of Fourier Series on the Infinite-Dimensional Torus
%J Matematičeskie zametki
%D 2018
%P 927-935
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/
%G ru
%F MZM_2018_103_6_a10
D. V. Fufaev. Summation of Fourier Series on the Infinite-Dimensional Torus. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 927-935. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a10/