Exact Cutting in Spaces of Cusp Forms with Characters
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 818-830
Voir la notice de l'article provenant de la source Math-Net.Ru
Structure theorems for spaces of cusp forms with quadratic characters are presented. It is proved that such spaces of levels $N \ne 3,17,19$ admit exact cutting if and only if the cutting function is a multiplicative $\eta$-product. The cases of the levels $N=3,17,19$ are also studied.
Keywords:
modular form, Dedekind eta-function
Mots-clés : cusp form, parabolic vertex.
Mots-clés : cusp form, parabolic vertex.
@article{MZM_2018_103_6_a1,
author = {G. V. Voskresenskaya},
title = {Exact {Cutting} in {Spaces} of {Cusp} {Forms} with {Characters}},
journal = {Matemati\v{c}eskie zametki},
pages = {818--830},
publisher = {mathdoc},
volume = {103},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a1/}
}
G. V. Voskresenskaya. Exact Cutting in Spaces of Cusp Forms with Characters. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 818-830. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a1/