Finding Solution Subspaces of the Laplace and Heat Equations
Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 803-817.

Voir la notice de l'article provenant de la source Math-Net.Ru

We single out subspaces of harmonic functions in the upper half-plane coinciding with spaces of convolutions with the Abel–Poisson kernel and subspaces of solutions of the heat equation coinciding with spaces of convolutions with the Gauss–Weierstrass kernel that are isometric to the corresponding spaces of real functions defined on the set of real numbers. It is shown that, due to isometry, the main approximation characteristics of functions and function classes in these subspaces are equal to the corresponding approximation characteristics of functions and function classes of one variable.
Mots-clés : Laplace equation, Abel–Poisson delta kernel, Gauss–Weierstrass delta kernel, heat equation, space of convolutions, Lebesgue point
Keywords: Hölder's inequality.
@article{MZM_2018_103_6_a0,
     author = {D. N. Bushev and Yu. I. Kharkevich},
     title = {Finding {Solution} {Subspaces} of the {Laplace} and {Heat} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--817},
     publisher = {mathdoc},
     volume = {103},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a0/}
}
TY  - JOUR
AU  - D. N. Bushev
AU  - Yu. I. Kharkevich
TI  - Finding Solution Subspaces of the Laplace and Heat Equations
JO  - Matematičeskie zametki
PY  - 2018
SP  - 803
EP  - 817
VL  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a0/
LA  - ru
ID  - MZM_2018_103_6_a0
ER  - 
%0 Journal Article
%A D. N. Bushev
%A Yu. I. Kharkevich
%T Finding Solution Subspaces of the Laplace and Heat Equations
%J Matematičeskie zametki
%D 2018
%P 803-817
%V 103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a0/
%G ru
%F MZM_2018_103_6_a0
D. N. Bushev; Yu. I. Kharkevich. Finding Solution Subspaces of the Laplace and Heat Equations. Matematičeskie zametki, Tome 103 (2018) no. 6, pp. 803-817. http://geodesic.mathdoc.fr/item/MZM_2018_103_6_a0/

[1] D. M. Bushev, “Isometry of functional spaces with different number of variables”, Ukrainian Math. J., 50:8 (1998), 1170–1191 | DOI | MR | Zbl

[2] D. M. Bushev, Yu. I. Kharkevych, “Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function”, Ukrainian Math. J., 67:11 (2015), 1643–1661 | DOI | MR

[3] E. L. Shtark, “Polnoe asimptoticheskoe razlozhenie dlya verkhnei grani ukloneniya funktsii iz Lip 1 ot singulyarnogo integrala Abelya–Puassona”, Matem. zametki, 13:1 (1973), 21–28 | MR | Zbl

[4] L. P. Falaleev, “Priblizhenie sopryazhennykh funktsii obobschennymi operatorami Abelya–Puassona”, Matem. zametki, 67:4 (2000), 595–602 | DOI | MR | Zbl

[5] V. A. Baskakov, “O nekotorykh svoistvakh operatorov tipa operatorov Abelya–Puassona”, Matem. zametki, 17:2 (1975), 169–180 | MR | Zbl

[6] Yu. I. Kharkevich, T. A. Stepanyuk, “Approksimativnye svoistva integralov Puassona na klassakh $C^{\psi}_{\beta}H^{\alpha}$”, Matem. zametki, 96:6 (2014), 939–952 | DOI | MR | Zbl

[7] L. P. Falaleev, “O priblizhenii funktsii obobschennymi operatorami Abelya–Puassona”, Sib. matem. zhurn., 42:4 (2001), 926–936 | MR | Zbl

[8] Yu. I. Kharkevych, I. V. Kal'chuk, “Approximation of $(\psi,\beta)$-differentiable functions by Weierstrass integrals”, Ukrainian Math. J., 59:7 (2007), 1059–1087 | DOI | MR | Zbl

[9] G. M. Polozhii, Rivnyannya matematichnoï fiziki, Radyanska shkola, K., 1959

[10] S. Bokhner, Lektsii ob integralakh Fure, Fizmatgiz, M., 1962 | MR

[11] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[12] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[13] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[14] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[15] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[16] S. Banakh, Kurs funktsionalnogo analizu, Radyanska shkola, K., 1948

[17] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[18] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl