On the Behavior of a Power Series with Completely Multiplicative Coefficients near the Unit Circle
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 750-764.

Voir la notice de l'article provenant de la source Math-Net.Ru

Power series whose coefficients are values of completely multiplicative functions from a general class determined by a small number of constraints are studied. The paper contains proofs of asymptotic estimates as such a power series tends to the roots of $1$ along the radii of the unit circle, whence, in particular, it follows that these series cannot be extended beyond the unit disk.
Keywords: power series, multiplicative function, Dirichlet series.
@article{MZM_2018_103_5_a9,
     author = {O. A. Petruschov},
     title = {On the {Behavior} of a {Power} {Series} with {Completely} {Multiplicative} {Coefficients} near the {Unit} {Circle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {750--764},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a9/}
}
TY  - JOUR
AU  - O. A. Petruschov
TI  - On the Behavior of a Power Series with Completely Multiplicative Coefficients near the Unit Circle
JO  - Matematičeskie zametki
PY  - 2018
SP  - 750
EP  - 764
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a9/
LA  - ru
ID  - MZM_2018_103_5_a9
ER  - 
%0 Journal Article
%A O. A. Petruschov
%T On the Behavior of a Power Series with Completely Multiplicative Coefficients near the Unit Circle
%J Matematičeskie zametki
%D 2018
%P 750-764
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a9/
%G ru
%F MZM_2018_103_5_a9
O. A. Petruschov. On the Behavior of a Power Series with Completely Multiplicative Coefficients near the Unit Circle. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 750-764. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a9/

[1] G. H. Hardy, J. E. Littlewood, “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta Math., 41 (1916), 119–196 | DOI | MR

[2] I. Katai, “On oscillations of number-theoretic functions”, Acta Arith., 13 (1967), 107–122 | DOI | MR

[3] S. Wigert, “Sur la série de Lambert et son application à la théorie des nombres”, Acta Math., 41:1 (1916), 197–218 | DOI | MR

[4] P. Borwein, M. Coons, “Transcendence of power series for some number theoretic functions”, Proc. Amer. Math. Soc., 137:4 (2009) | MR

[5] O. A. Petrushov, “Asimptoticheskoe razlozhenie nekotorykh stepennykh ryadov s multiplikativnymi koeffitsientami vblizi edinichnoi okruzhnosti”, Matem. zametki, 100:6 (2016), 887–899 | DOI | MR

[6] O. A. Petrushov, “Asimptoticheskie otsenki funktsii na osnove povedeniya ikh preobrazovaniya Laplasa vblizi osobykh tochek”, Matem. zametki, 93:6 (2013), 920–931 | DOI | MR | Zbl

[7] E. Knepp, Ellipticheskie krivye, Faktorial Press, M., 2004 | Zbl

[8] O. Petrushov, “On the behaviour close to the unit circle of the power series with Möbius function coefficients”, Acta Arith., 164 (2014), 119–136 | DOI | MR

[9] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | Zbl

[10] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[11] O. A. Petrushov, “O povedenii nekotorykh stepennykh ryadov vblizi edinichnoi okruzhnosti”, Chebyshevskii sb., 12:2 (2011), 85–95 | MR

[12] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon press, Oxford, 1986 | MR | Zbl

[13] G. H. Hardy, M. Riesz, The General Theory of Dirichlet's Series, Cambridge Univ. Press, Cambridge, 1915 | MR | Zbl