Plane Partitions and Their Pedestal Polynomials
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 745-749.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear extension $P$ of a partially ordered set $\mathscr S$, we define a multivariate polynomial by counting certain reverse partitions on $\mathscr S$, called $P$-pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of $P$. For $\mathscr S$ a Young diagram, we show that this polynomial generalizes the hook polynomial.
Keywords: Young diagram, hook polynomial, Schur functions.
@article{MZM_2018_103_5_a8,
     author = {O. V. Ogievetskii and S. B. Shlosman},
     title = {Plane {Partitions} and {Their} {Pedestal} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {745--749},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a8/}
}
TY  - JOUR
AU  - O. V. Ogievetskii
AU  - S. B. Shlosman
TI  - Plane Partitions and Their Pedestal Polynomials
JO  - Matematičeskie zametki
PY  - 2018
SP  - 745
EP  - 749
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a8/
LA  - ru
ID  - MZM_2018_103_5_a8
ER  - 
%0 Journal Article
%A O. V. Ogievetskii
%A S. B. Shlosman
%T Plane Partitions and Their Pedestal Polynomials
%J Matematičeskie zametki
%D 2018
%P 745-749
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a8/
%G ru
%F MZM_2018_103_5_a8
O. V. Ogievetskii; S. B. Shlosman. Plane Partitions and Their Pedestal Polynomials. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 745-749. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a8/

[1] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Stud. Adv. Math., 49, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[2] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[3] S. B. Shlosman, “Konstruktsiya Vulfa v statisticheskoi mekhanike i kombinatorike”, UMN, 56:4 (340) (2001), 97–128 | DOI | MR | Zbl

[4] D. E. Knuth, “A note on solid partitions”, Math. Comp., 24:112 (1970), 955–961 | DOI | MR