Plane Partitions and Their Pedestal Polynomials
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 745-749
Cet article a éte moissonné depuis la source Math-Net.Ru
For a linear extension $P$ of a partially ordered set $\mathscr S$, we define a multivariate polynomial by counting certain reverse partitions on $\mathscr S$, called $P$-pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of $P$. For $\mathscr S$ a Young diagram, we show that this polynomial generalizes the hook polynomial.
Keywords:
Young diagram, hook polynomial, Schur functions.
@article{MZM_2018_103_5_a8,
author = {O. V. Ogievetskii and S. B. Shlosman},
title = {Plane {Partitions} and {Their} {Pedestal} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {745--749},
year = {2018},
volume = {103},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a8/}
}
O. V. Ogievetskii; S. B. Shlosman. Plane Partitions and Their Pedestal Polynomials. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 745-749. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a8/
[1] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Stud. Adv. Math., 49, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl
[2] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[3] S. B. Shlosman, “Konstruktsiya Vulfa v statisticheskoi mekhanike i kombinatorike”, UMN, 56:4 (340) (2001), 97–128 | DOI | MR | Zbl
[4] D. E. Knuth, “A note on solid partitions”, Math. Comp., 24:112 (1970), 955–961 | DOI | MR