Exponential Stability of a Certain Semigroup and Applications
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 702-719.

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniform exponential stability of a $C_0$-semigroup with generator of a special form is proved. Such semigroups arise in the study of various problems of the theory of viscoelasticity. The proved statement is applied to the study of the asymptotic behavior of solutions in the problem of small motions of a viscoelastic body subject to driving forces of a special form.
Keywords: $C_0$-semigroup, integro-differential equation, exponential stability, materials with memory, asymptotics.
@article{MZM_2018_103_5_a5,
     author = {D. A. Zakora},
     title = {Exponential {Stability} of a {Certain} {Semigroup} and {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {702--719},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a5/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Exponential Stability of a Certain Semigroup and Applications
JO  - Matematičeskie zametki
PY  - 2018
SP  - 702
EP  - 719
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a5/
LA  - ru
ID  - MZM_2018_103_5_a5
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Exponential Stability of a Certain Semigroup and Applications
%J Matematičeskie zametki
%D 2018
%P 702-719
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a5/
%G ru
%F MZM_2018_103_5_a5
D. A. Zakora. Exponential Stability of a Certain Semigroup and Applications. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 702-719. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a5/

[1] C. M. Dafermos, “Asymptotic stability in viscoelasticity”, Arch. Rational Mech. Anal., 37 (1970), 297–308 | DOI | MR

[2] C. M. Dafermos, “On abstract Volterra equations with applications to linear viscoelasticity”, J. Differential Equations, 7 (1970), 554–569 | DOI | MR

[3] M. Renardy, W. J. Hrusa, J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monogr. Surveys Pure Appl. Math., 35, Longman Sci. and Tec., Harlow, 1987 | MR

[4] M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Stud. Appl. Math., 12, SIAM, Philadelphia, PA, 1992 | MR

[5] Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems, Chapman Hall/CRC Res. Notes Math., 398, Chapman Hall/CRC, Boca Raton, FL, 1999 | MR

[6] J. Lagnese, “Decay of solutions of wave equations in a bounded region with boundary dissipation”, J. Differential Equations, 50:2 (1983), 163–182 | DOI | MR

[7] M. Fabrizio, B. Lazzari, “On the existence and the asymptotic stability of solutions for linearly viscoelastic solids”, Arch. Rational Mech. Anal., 116:2 (1991), 139–152 | DOI | MR

[8] J. E. Muñoz Rivera, “Asymptotic behaviour in linear viscoelasticity”, Quart. Appl. Math., 52:4 (1994), 629–648 | MR

[9] W. Liu, “The exponential stabilization of the higher-dimensional linear system of thermoviscoelasticity”, J. Math. Pures Appl. (9), 77:4 (1998), 355–386 | DOI | MR

[10] F. Alabau-Boussouria, J. Prüss, R. Zacher, “Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels”, C. R. Math. Acad. Sci. Paris, 347 (2009), 277–282 | DOI | MR

[11] V. V. Vlasov, N. A. Rautian, “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 22–29 avgusta, 2014). Chast 1, SMFN, 58, RUDN, M., 2015, 22–42

[12] J. A. D. Appleby, M. Fabrizio, B. Lazzari, “On exponential asymptotic stability in linear viscoelasticity”, Math. Models Methods Appl. Sci., 16:10 (2006), 1677–1694 | MR

[13] J. E. Muñoz Rivera, M. G. Naso, “On the decay of the energy for systems with memory and indefinite dissipation”, Asymptot. Anal., 49 (2006), 189–204 | MR

[14] J. E. Muñoz Rivera, M. G. Naso, “Asymptotic stability of semigroups associated with linear weak dissipative systems with memory”, J. Math. Anal. Appl., 326 (2007), 691–707 | DOI | MR

[15] F. Alabau-Boussouria, P. Cannarsa, D. Sforza, “Decay estimates for second order evolution equations with memory”, J. Funct. Anal., 254:5 (2008), 1342–1372 | DOI | MR

[16] F. Alabau-Boussouria, P. Cannarsa, “A general method for proving sharp energy decay rates for memory-dissipative evolution equations”, C. R. Math. Acad. Sci. Paris, 347 (2009), 867–872 | DOI | MR

[17] A. G. Baskakov, “Otsenki funktsii Grina i parametrov eksponentsialnoi dikhotomii giperbolicheskoi polugruppy operatorov i lineinykh otnoshenii”, Matem. sb., 206:8 (2015), 23–62 | DOI | MR | Zbl

[18] A. B. Muravnik, “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | MR

[19] A. V. Vestyak, O. A. Matevosyan, “O povedenii resheniya zadachi Koshi dlya giperbolicheskogo uravneniya s periodicheskimi koeffitsientami”, Matem. zametki, 100:5 (2016), 766–769 | DOI | MR

[20] A. G. Baskakov, V. D. Kharitonov, “Spektralnyi analiz operatornykh polinomov i raznostnykh operatorov vysokogo poryadka”, Matem. zametki, 101:3 (2017), 330–345 | DOI | MR

[21] R. O. Griniv, A. A. Shkalikov, “Eksponentsialnaya ustoichivost polugrupp, svyazannykh s nekotorymi operatornymi modelyami v mekhanike”, Matem. zametki, 73:5 (2003), 657–664 | DOI | MR | Zbl

[22] L. Gearhart, “Spectral theory for contraction semigroups on Hilbert spaces”, Trans. Amer. Math. Soc., 236 (1978), 385–394 | DOI | MR

[23] K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, Berlin, 2000 | MR

[24] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[25] M. L. Heard, “An abstract semilinear hyperbolic Volterra integrodifferential equation”, J. Math. Anal. Appl., 80 (1981), 175–202 | DOI | MR

[26] W. Desch, R. Grimmer, W. Schappacher, “Some considerations for linear integrodifferential equations”, J. Math. Anal. Appl., 104 (1984), 219–234 | DOI | MR

[27] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 2. Nonself-Adjoint Problems for Viscous Fluids, Oper. Theory Adv. Appl., 146, Birkhäuser Verlag, Basel, 2003 | MR

[28] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl

[29] A. A. Ilyushin, B. E. Pobedrya, Osnovy matematicheskoi teorii termovyazko-uprugosti, Nauka, M., 1970 | MR

[30] K. Rektoris, Variatsionnye metody v matematicheskoi fizike i mekhanike, Mir, M., 1985 | MR | Zbl

[31] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 1. Self-Adjoint Problems for an Ideal Fluid, Oper. Theory Adv. Appl., 128, Birkhäuser Verlag, Basel, 2001 | MR