Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_5_a5, author = {D. A. Zakora}, title = {Exponential {Stability} of a {Certain} {Semigroup} and {Applications}}, journal = {Matemati\v{c}eskie zametki}, pages = {702--719}, publisher = {mathdoc}, volume = {103}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a5/} }
D. A. Zakora. Exponential Stability of a Certain Semigroup and Applications. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 702-719. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a5/
[1] C. M. Dafermos, “Asymptotic stability in viscoelasticity”, Arch. Rational Mech. Anal., 37 (1970), 297–308 | DOI | MR
[2] C. M. Dafermos, “On abstract Volterra equations with applications to linear viscoelasticity”, J. Differential Equations, 7 (1970), 554–569 | DOI | MR
[3] M. Renardy, W. J. Hrusa, J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monogr. Surveys Pure Appl. Math., 35, Longman Sci. and Tec., Harlow, 1987 | MR
[4] M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Stud. Appl. Math., 12, SIAM, Philadelphia, PA, 1992 | MR
[5] Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems, Chapman Hall/CRC Res. Notes Math., 398, Chapman Hall/CRC, Boca Raton, FL, 1999 | MR
[6] J. Lagnese, “Decay of solutions of wave equations in a bounded region with boundary dissipation”, J. Differential Equations, 50:2 (1983), 163–182 | DOI | MR
[7] M. Fabrizio, B. Lazzari, “On the existence and the asymptotic stability of solutions for linearly viscoelastic solids”, Arch. Rational Mech. Anal., 116:2 (1991), 139–152 | DOI | MR
[8] J. E. Muñoz Rivera, “Asymptotic behaviour in linear viscoelasticity”, Quart. Appl. Math., 52:4 (1994), 629–648 | MR
[9] W. Liu, “The exponential stabilization of the higher-dimensional linear system of thermoviscoelasticity”, J. Math. Pures Appl. (9), 77:4 (1998), 355–386 | DOI | MR
[10] F. Alabau-Boussouria, J. Prüss, R. Zacher, “Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels”, C. R. Math. Acad. Sci. Paris, 347 (2009), 277–282 | DOI | MR
[11] V. V. Vlasov, N. A. Rautian, “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 22–29 avgusta, 2014). Chast 1, SMFN, 58, RUDN, M., 2015, 22–42
[12] J. A. D. Appleby, M. Fabrizio, B. Lazzari, “On exponential asymptotic stability in linear viscoelasticity”, Math. Models Methods Appl. Sci., 16:10 (2006), 1677–1694 | MR
[13] J. E. Muñoz Rivera, M. G. Naso, “On the decay of the energy for systems with memory and indefinite dissipation”, Asymptot. Anal., 49 (2006), 189–204 | MR
[14] J. E. Muñoz Rivera, M. G. Naso, “Asymptotic stability of semigroups associated with linear weak dissipative systems with memory”, J. Math. Anal. Appl., 326 (2007), 691–707 | DOI | MR
[15] F. Alabau-Boussouria, P. Cannarsa, D. Sforza, “Decay estimates for second order evolution equations with memory”, J. Funct. Anal., 254:5 (2008), 1342–1372 | DOI | MR
[16] F. Alabau-Boussouria, P. Cannarsa, “A general method for proving sharp energy decay rates for memory-dissipative evolution equations”, C. R. Math. Acad. Sci. Paris, 347 (2009), 867–872 | DOI | MR
[17] A. G. Baskakov, “Otsenki funktsii Grina i parametrov eksponentsialnoi dikhotomii giperbolicheskoi polugruppy operatorov i lineinykh otnoshenii”, Matem. sb., 206:8 (2015), 23–62 | DOI | MR | Zbl
[18] A. B. Muravnik, “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | MR
[19] A. V. Vestyak, O. A. Matevosyan, “O povedenii resheniya zadachi Koshi dlya giperbolicheskogo uravneniya s periodicheskimi koeffitsientami”, Matem. zametki, 100:5 (2016), 766–769 | DOI | MR
[20] A. G. Baskakov, V. D. Kharitonov, “Spektralnyi analiz operatornykh polinomov i raznostnykh operatorov vysokogo poryadka”, Matem. zametki, 101:3 (2017), 330–345 | DOI | MR
[21] R. O. Griniv, A. A. Shkalikov, “Eksponentsialnaya ustoichivost polugrupp, svyazannykh s nekotorymi operatornymi modelyami v mekhanike”, Matem. zametki, 73:5 (2003), 657–664 | DOI | MR | Zbl
[22] L. Gearhart, “Spectral theory for contraction semigroups on Hilbert spaces”, Trans. Amer. Math. Soc., 236 (1978), 385–394 | DOI | MR
[23] K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, Berlin, 2000 | MR
[24] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[25] M. L. Heard, “An abstract semilinear hyperbolic Volterra integrodifferential equation”, J. Math. Anal. Appl., 80 (1981), 175–202 | DOI | MR
[26] W. Desch, R. Grimmer, W. Schappacher, “Some considerations for linear integrodifferential equations”, J. Math. Anal. Appl., 104 (1984), 219–234 | DOI | MR
[27] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 2. Nonself-Adjoint Problems for Viscous Fluids, Oper. Theory Adv. Appl., 146, Birkhäuser Verlag, Basel, 2003 | MR
[28] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl
[29] A. A. Ilyushin, B. E. Pobedrya, Osnovy matematicheskoi teorii termovyazko-uprugosti, Nauka, M., 1970 | MR
[30] K. Rektoris, Variatsionnye metody v matematicheskoi fizike i mekhanike, Mir, M., 1985 | MR | Zbl
[31] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 1. Self-Adjoint Problems for an Ideal Fluid, Oper. Theory Adv. Appl., 128, Birkhäuser Verlag, Basel, 2001 | MR