Free $n$-Tuple Semigroups
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 693-701.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the study of $n$-tuple semigroups. A free $n$-tuple semigroup of arbitrary rank is constructed and, as a consequence, a singly generated free $n$-tuple semigroup is characterized. Moreover, examples of $n$-tuple semigroups are presented, the independence of the $n$-tuple semigroup axioms is proved, and it is shown that the natural semigroups of the constructed free $n$-tuple semigroup are isomorphic and the automorphism group of this semigroup is isomorphic to a symmetric group.
Keywords: $n$-tuple semigroup, independence of axioms, free $n$-tuple semigroup, semigroup.
@article{MZM_2018_103_5_a4,
     author = {A. V. Zhuchok},
     title = {Free $n${-Tuple} {Semigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--701},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a4/}
}
TY  - JOUR
AU  - A. V. Zhuchok
TI  - Free $n$-Tuple Semigroups
JO  - Matematičeskie zametki
PY  - 2018
SP  - 693
EP  - 701
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a4/
LA  - ru
ID  - MZM_2018_103_5_a4
ER  - 
%0 Journal Article
%A A. V. Zhuchok
%T Free $n$-Tuple Semigroups
%J Matematičeskie zametki
%D 2018
%P 693-701
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a4/
%G ru
%F MZM_2018_103_5_a4
A. V. Zhuchok. Free $n$-Tuple Semigroups. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 693-701. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a4/

[1] N. A. Koreshkov, “$n$-kratnye algebry assotsiativnogo tipa”, Izv. vuzov. Matem., 2008, no. 12, 34–42 | MR | Zbl

[2] J.-L. Loday, M. O. Ronco, “Trialgebras and families of polytopes”, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004, 369–398 | DOI | MR

[3] A. V. Zhuchok, “Trioids”, Asian-Eur. J. Math., 8:4 (2015), 1550089 | DOI | MR

[4] J.-L. Loday, “Dialgebras”, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR

[5] A. V. Zhuchok, “Commutative dimonoids”, Algebra Discrete Math., 2009, no. 2, 116–127 | MR

[6] M. Gould, K. A. Linton, A. W. Nelson, “Interassociates of monogenic semigroups”, Semigroup Forum, 68:2 (2004), 186–201 | DOI | MR

[7] B. N. Givens, K. Linton, A. Rosin, L. Dishman, “Interassociates of the free commutative semigroup on $n$ generators”, Semigroup Forum, 74:3 (2007), 370–378 | DOI | MR

[8] B. M. Shain, “Restriktivnye bipolugruppy”, Izv. vuzov. Matem., 1965, no. 1, 168–179 | MR | Zbl

[9] B. M. Schein, Restrictive semigroups and bisemigroups, Technical Report, Univ. of Arkansas, Fayetteville, AR, 1989

[10] B. M. Schein, “Relation algebras and function semigroups”, Semigroup Forum, 1:1 (1970), 1–62 | DOI | MR

[11] T. Pirashvili, “Sets with two associative operations”, Cent. Eur. J. Math., 1:2 (2003), 169–183 | DOI | MR

[12] A. Sade, “Groupoïdes en relation associative et semigroupes mutuellement associatifs”, Ann. Soc. Sci. Bruxelles Sér. I, 75 (1961), 52–57 | MR

[13] A. V. Zhuchok, “Free commutative dimonoids”, Algebra Discrete Math., 9:1 (2010), 109–119 | MR | Zbl

[14] A. B. Gorbatkov, “Interassotsiativnost na svobodnoi kommutativnoi polugruppe”, Sib. matem. zhurn., 54:3 (2013), 563–568 | MR

[15] S. J. Boyd, M. Gould, A. W. Nelson, “Interassociativity of semigroups”, Proceedings of the Tennessee Topology Conference, World Sci. Publ., River Edge, NJ, 1997, 33–51 | MR

[16] A. V. Zhuchok, “Free rectangular dibands and free dimonoids”, Algebra Discrete Math., 11:2 (2011), 92–111 | MR | Zbl

[17] A. V. Zhuchok, “Free $n$-nilpotent dimonoids”, Algebra Discrete Math., 16:2 (2013), 299–310 | MR