Restricted Homological Dimensions of Complexes
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 667-679.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define and study the notions of restricted Tor-dimension and Ext-dimension for unbounded complexes of left modules over associative rings. We show that, for a right (respectively, left) homologically bounded complex, our definition agrees with the small restricted flat (respectively, injective) dimension defined by Christensen et al. Furthermore, we show that the restricted Tor-dimension defined in this paper is a refinement of the Gorenstein flat dimension of an unbounded complex in some sense. In addition, we give some results concerning restricted homological dimensions under a base change over commutative Noetherian rings.
Keywords: DG-projective (injective) complex, module-finite.
@article{MZM_2018_103_5_a2,
     author = {Wu Dejun and Kong Fandy},
     title = {Restricted {Homological} {Dimensions} of {Complexes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {667--679},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a2/}
}
TY  - JOUR
AU  - Wu Dejun
AU  - Kong Fandy
TI  - Restricted Homological Dimensions of Complexes
JO  - Matematičeskie zametki
PY  - 2018
SP  - 667
EP  - 679
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a2/
LA  - ru
ID  - MZM_2018_103_5_a2
ER  - 
%0 Journal Article
%A Wu Dejun
%A Kong Fandy
%T Restricted Homological Dimensions of Complexes
%J Matematičeskie zametki
%D 2018
%P 667-679
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a2/
%G ru
%F MZM_2018_103_5_a2
Wu Dejun; Kong Fandy. Restricted Homological Dimensions of Complexes. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 667-679. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a2/

[1] L. L. Avramov, H.-B. Foxby, “Homological dimensions of unbounded complexes”, J. Pure Appl. Algebra, 71 (1991), 129–155 | DOI | MR

[2] O. Veliche, “Gorenstein projective dimension for complexes”, Trans. Amer. Math. Soc., 358:3 (2006), 1257–1283 | DOI | MR

[3] J. Asadollahi, S. Salarian, “Gorenstein injective dimension for complexes and Iwanaga–Gorenstein rings”, Comm. Algebra, 34:8 (2006), 3009–3022 | DOI | MR

[4] L. W. Christensen, H.-B. Foxby, A. Frankild, “Restricted homological dimensions and Cohen–Macaulayness”, J. Algebra, 251 (2002), 479–502 | DOI | MR

[5] A. Iacob, “Gorenstein flat dimension of complexes”, J. Math. Kyoto Univ., 49:4 (2009), 817–842 | DOI | MR

[6] E. E. Enochs, O. M. G. Jenda, J. Xu, “Orthogonality in the category of complexes”, Math. J. Okayama Univ., 38 (1996), 25–46 | MR

[7] D. Bennis, “Rings over which the class of Gorenstein flat modules is closed under extensions”, Comm. Algebra, 37:3 (2009), 855–868 | DOI | MR

[8] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra, 189 (2004), 167–193 | DOI | MR

[9] L. W. Christensen, S. Sather-Wagstaff, “Transfer of Gorenstein dimensions along ring homomorphisms”, J. Pure Appl. Algebra, 214:6 (2010), 982–989 | DOI | MR

[10] D. Apassov, “Almost finite modules”, Comm. Algebra, 27:2 (1999), 919–931 | DOI | MR

[11] L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., 1747, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl