On a Very Weak Solution of the Wave Equation for a Hamiltonian in a Singular Electromagnetic Field
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 790-793.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: wave equation, Cauchy problem, Landau Hamiltonian, singular electromagnetic field, very weak solution.
@article{MZM_2018_103_5_a15,
     author = {M. V. Ruzhansky and N. E. Tokmagambetov},
     title = {On a {Very} {Weak} {Solution} of the {Wave} {Equation} for a {Hamiltonian} in a {Singular} {Electromagnetic} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {790--793},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a15/}
}
TY  - JOUR
AU  - M. V. Ruzhansky
AU  - N. E. Tokmagambetov
TI  - On a Very Weak Solution of the Wave Equation for a Hamiltonian in a Singular Electromagnetic Field
JO  - Matematičeskie zametki
PY  - 2018
SP  - 790
EP  - 793
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a15/
LA  - ru
ID  - MZM_2018_103_5_a15
ER  - 
%0 Journal Article
%A M. V. Ruzhansky
%A N. E. Tokmagambetov
%T On a Very Weak Solution of the Wave Equation for a Hamiltonian in a Singular Electromagnetic Field
%J Matematičeskie zametki
%D 2018
%P 790-793
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a15/
%G ru
%F MZM_2018_103_5_a15
M. V. Ruzhansky; N. E. Tokmagambetov. On a Very Weak Solution of the Wave Equation for a Hamiltonian in a Singular Electromagnetic Field. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 790-793. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a15/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika: nerelyativistskaya teoriya, Nauka, M., 1986 | MR

[2] A. M. Savchuk, A. A. Shkalikov, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[3] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, J. Lond. Math. Soc. (2), 88:3 (2013), 801–828 | DOI | MR

[4] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, J. Spectr. Theory, 4:4 (2014), 715–768 | DOI | MR

[5] K. A. Mirzoev, T. A. Safonova, Dokl. AN, 441:2 (2011), 165–168 | MR

[6] K. A. Mirzoev, A. A. Shkalikov, Matem. zametki, 99:5 (2016), 788–793 | DOI | MR

[7] V. E. Vladykina, A. A. Shkalikov, Matem. zametki, 98:6 (2015), 832–841 | DOI | MR

[8] R. O. Hryniv, Y. V. Mykytyuk, Inverse Problems, 19:3 (2003), 665–684 | DOI | MR

[9] M. I. Neiman-zade, A. A. Shkalikov, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[10] G. Garetto, M. Ruzhansky, Arch. Ration. Mech. Anal., 217:1 (2015), 113–154 | DOI | MR

[11] L. Landau, Z. Phys., 64 (1930), 629–637 | DOI | Zbl

[12] M. Oberguggenberger, Multiplication of Distributions and Applications to Partial Differential Equations, Longman Sci. and Tech., Harlow, 1992 | MR | Zbl