Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_5_a14, author = {A. Yu. Popov}, title = {New {Two-Sided} {Estimates} of the {Gamma} {Function} and the {Number} of $n${-Combinations} of $2n$ {Elements.} {Strong} {Enveloping} by an {Asymptotic} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {785--789}, publisher = {mathdoc}, volume = {103}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/} }
TY - JOUR AU - A. Yu. Popov TI - New Two-Sided Estimates of the Gamma Function and the Number of $n$-Combinations of $2n$ Elements. Strong Enveloping by an Asymptotic Series JO - Matematičeskie zametki PY - 2018 SP - 785 EP - 789 VL - 103 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/ LA - ru ID - MZM_2018_103_5_a14 ER -
%0 Journal Article %A A. Yu. Popov %T New Two-Sided Estimates of the Gamma Function and the Number of $n$-Combinations of $2n$ Elements. Strong Enveloping by an Asymptotic Series %J Matematičeskie zametki %D 2018 %P 785-789 %V 103 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/ %G ru %F MZM_2018_103_5_a14
A. Yu. Popov. New Two-Sided Estimates of the Gamma Function and the Number of $n$-Combinations of $2n$ Elements. Strong Enveloping by an Asymptotic Series. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 785-789. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/