New Two-Sided Estimates of the Gamma Function and the Number of $n$-Combinations of $2n$ Elements. Strong Enveloping by an Asymptotic Series
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 785-789.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: gamma function, two-sided estimates, asymptotic formula.
@article{MZM_2018_103_5_a14,
     author = {A. Yu. Popov},
     title = {New {Two-Sided} {Estimates} of the {Gamma} {Function} and the {Number} of $n${-Combinations} of $2n$ {Elements.} {Strong} {Enveloping} by an {Asymptotic} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {785--789},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - New Two-Sided Estimates of the Gamma Function and the Number of $n$-Combinations of $2n$ Elements. Strong Enveloping by an Asymptotic Series
JO  - Matematičeskie zametki
PY  - 2018
SP  - 785
EP  - 789
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/
LA  - ru
ID  - MZM_2018_103_5_a14
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T New Two-Sided Estimates of the Gamma Function and the Number of $n$-Combinations of $2n$ Elements. Strong Enveloping by an Asymptotic Series
%J Matematičeskie zametki
%D 2018
%P 785-789
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/
%G ru
%F MZM_2018_103_5_a14
A. Yu. Popov. New Two-Sided Estimates of the Gamma Function and the Number of $n$-Combinations of $2n$ Elements. Strong Enveloping by an Asymptotic Series. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 785-789. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a14/

[1] M. V. Fedoryuk, “Obvertyvayuschii ryad”, Matematicheskaya entsiklopediya, T. 3, Izd-vo “Sovetskaya entsiklopediya”, M., 1982, 1096

[2] G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949 | MR

[3] E. T. Whittaker,G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1927 | MR

[4] Yu. Yu. Machis, Liet. Matem. Rink., 47, Spec. Nr. (2007), 526–530

[5] H. Robbins, Amer. Math. Monthly, 62 (1955), 26–29 | DOI | MR

[6] N. Sonin, Ann. Sci. École Norm. Sup. (3), 6 (1889), 257–262 | MR

[7] N. Ya. Sonin, Issledovaniya o tsilindricheskikh funktsiyakh i spetsialnykh polinomakh, GITTL, M., 1954

[8] L. P. Kuptsov, “Gamma-funktsiya”, Matematicheskaya entsiklopediya, T. 1, Izd-vo “Sovetskaya entsiklopediya”, M., 1977, 866–870

[9] A. S. Belov, Matem. zametki, 100:2 (2016), 303–307 | DOI | MR

[10] I. V. Tikhonov, V. B. Sherstyukov, M. A. Petrosova, “Polinomy Bernshteina: staroe i novoe”, Matematicheskii forum. T. 8. Ch. 1. Issledovaniya po matematicheskomu analizu, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 126–175

[11] Z. Sasvari, J. Math. Anal. Appl., 236:1 (1999), 223–226 | DOI | MR