Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_5_a13, author = {A. V. Podobryaev}, title = {Diameter of the {Berger} {Sphere}}, journal = {Matemati\v{c}eskie zametki}, pages = {779--784}, publisher = {mathdoc}, volume = {103}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a13/} }
A. V. Podobryaev. Diameter of the Berger Sphere. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 779-784. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a13/
[1] O. Lablée, Spectral Theory in Riemannian Geometry, EMS, Zürich, 2015 | MR | Zbl
[2] M. Berger, Ann. Scuola Norm. Sup. Pisa (3), 15 (1961), 179–246 | MR
[3] N. Eldredge, M. Gordina, L. Saloff-Coste, Left-Invariant Geometries on SU(2) are Uniformly Doubling, 2017, arXiv: 1708.03021
[4] A. V. Podobryaev, Yu. L. Sachkov, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR
[5] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004
[6] L. Bates, F. Fassò, Int. Math. Forum, 2:43 (2007), 2109–2139 | DOI | MR
[7] Yu. L. Sachkov, Matem. sb., 197:4 (2006), 123–150 | DOI | MR | Zbl
[8] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005
[9] S. G. Krantz, H. R. Parks, The Implicit Function Theorem: History, Theory and Applications, Birkhäuser, Basel, 2001 | MR