On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 774-778
Voir la notice de l'article provenant de la source Math-Net.Ru
Keywords:
integro-differential equation, operator function, spectrum localization.
@article{MZM_2018_103_5_a12,
author = {A. V. Davydov and Yu. A. Tikhonov},
title = {On {Properties} of the {Spectrum} of an {Operator} {Pencil} {Arising} in {Viscoelasticity} {Theory}},
journal = {Matemati\v{c}eskie zametki},
pages = {774--778},
publisher = {mathdoc},
volume = {103},
number = {5},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a12/}
}
TY - JOUR AU - A. V. Davydov AU - Yu. A. Tikhonov TI - On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory JO - Matematičeskie zametki PY - 2018 SP - 774 EP - 778 VL - 103 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a12/ LA - ru ID - MZM_2018_103_5_a12 ER -
A. V. Davydov; Yu. A. Tikhonov. On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 774-778. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a12/