On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 774-778

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: integro-differential equation, operator function, spectrum localization.
@article{MZM_2018_103_5_a12,
     author = {A. V. Davydov and Yu. A. Tikhonov},
     title = {On {Properties} of the {Spectrum} of an {Operator} {Pencil} {Arising} in {Viscoelasticity} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {774--778},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a12/}
}
TY  - JOUR
AU  - A. V. Davydov
AU  - Yu. A. Tikhonov
TI  - On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory
JO  - Matematičeskie zametki
PY  - 2018
SP  - 774
EP  - 778
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a12/
LA  - ru
ID  - MZM_2018_103_5_a12
ER  - 
%0 Journal Article
%A A. V. Davydov
%A Yu. A. Tikhonov
%T On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory
%J Matematičeskie zametki
%D 2018
%P 774-778
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a12/
%G ru
%F MZM_2018_103_5_a12
A. V. Davydov; Yu. A. Tikhonov. On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 774-778. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a12/