Distances on the Commuting Graph of the Ring of Real Martices
Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 765-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

The vertices of the commuting graph of a semigroup $S$ are the noncentral elements of this semigroup, and its edges join all pairs of elements $g$, $h$ that satisfy the relation $gh=hg$. The paper presents a proof of the fact that the diameter of the commuting graph of the semigroup of real matrices of order $n\ge 3$ is equal to 4. A survey of results in that subject matter is presented, and several open problems are formulated.
Keywords: commuting graph, matrix theory.
@article{MZM_2018_103_5_a10,
     author = {Ya. Shitov},
     title = {Distances on the {Commuting} {Graph} of the {Ring} of {Real} {Martices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {765--768},
     publisher = {mathdoc},
     volume = {103},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a10/}
}
TY  - JOUR
AU  - Ya. Shitov
TI  - Distances on the Commuting Graph of the Ring of Real Martices
JO  - Matematičeskie zametki
PY  - 2018
SP  - 765
EP  - 768
VL  - 103
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a10/
LA  - ru
ID  - MZM_2018_103_5_a10
ER  - 
%0 Journal Article
%A Ya. Shitov
%T Distances on the Commuting Graph of the Ring of Real Martices
%J Matematičeskie zametki
%D 2018
%P 765-768
%V 103
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a10/
%G ru
%F MZM_2018_103_5_a10
Ya. Shitov. Distances on the Commuting Graph of the Ring of Real Martices. Matematičeskie zametki, Tome 103 (2018) no. 5, pp. 765-768. http://geodesic.mathdoc.fr/item/MZM_2018_103_5_a10/

[1] J. Araújo, M. Kinyon, J. Konieczny, “Minimal paths in the commuting graphs of semigroups”, European J. Combin., 32:2 (2011), 178–197 | DOI | MR | Zbl

[2] M. Giudici, C. Parker, “There is no upper bound for the diameter of the commuting graph of a finite group”, J. Combin. Theory Ser. A, 120:7 (2013), 1600–1603 | DOI | MR | Zbl

[3] A. S. Rapinchuk, Y. Segev, G. M. Seitz, “Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable”, J. Amer. Math. Soc., 15:4 (2002), 929–978 | DOI | MR | Zbl

[4] S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, “On commuting graphs of semisimple rings”, Linear Algebra Appl., 390 (2004), 345–355 | DOI | MR | Zbl

[5] S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, “On the diameters of commuting graphs”, Linear Algebra Appl., 418:1 (2006), 161–176 | DOI | MR | Zbl

[6] C. Miguel, “A note on a conjecture about commuting graphs”, Linear Algebra Appl., 438:12 (2013), 4750–4756 | DOI | MR | Zbl

[7] C. Miguel, “On the diameter of the commuting graph of the matrix ring over a centrally finite division ring”, Linear Algebra Appl., 509 (2016), 276–285 | DOI | MR | Zbl

[8] J. M. Grau, A. Oller-Marcen, C. Tasis, On the Diameter of the Commuting Graph of the Full Matrix Ring Over the Real Numbers, 2014, arXiv: 1412.0541

[9] D. Dolžan, D. Kokol Bukovšek, B. Kuzma, P. Oblak, “On diameter of the commuting graph of a full matrix algebra over a finite field”, Finite Fields Appl., 37 (2016), 36–45 | DOI | MR | Zbl

[10] Y. Shitov, “A matrix ring with commuting graph of maximal diameter”, J. Combin. Theory Ser. A, 141 (2016), 127–135 | DOI | MR | Zbl

[11] E. A. Bertram, “Some applications of graph theory to finite groups”, Discrete Math., 44:1 (1983), 31–43 | DOI | MR | Zbl

[12] V. A. Zorich, Matematicheskii analiz, Ch. 1, 2, MTsNMO, M., 2012

[13] E. B. Vinberg, Kurs algebry, Faktorial-Press, M., 2001 | MR | Zbl

[14] S. Akbari, H. Bidkhori, A. Mohammadian, “Commuting graphs of matrix algebras”, Comm. Algebra, 36:11 (2008), 4020–4031 | DOI | MR | Zbl

[15] D. G. Mead, “The missing fields”, Amer. Math. Monthly, 94:9 (1987), 871–872 | DOI | MR | Zbl

[16] M. Giudici, A. Pope, The Diameters of Commuting Graphs of Linear Groups and Matrix Rings Over the Integers Modulo $m$, 2010, arXiv: 1003.0156

[17] D. Dolžan, D. Kokol Bukovšek, P. Oblak, “Diameters of commuting graphs of matrices over semirings”, Semigroup Forum, 84:2 (2012), 365–373 | DOI | MR | Zbl