An Approach to the Study of Finitely Presented Groups Based on the Notion of Discrete Curvature
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 568-575
Voir la notice de l'article provenant de la source Math-Net.Ru
A sufficient condition for the hyperbolicity of a group presented in terms of generators and defining relations is considered. The condition is formulated in terms of the negativity of a discrete analog of curvature for the Lyndon–van Kampen diagrams over a presentation of a group and is a generalization of the small cancellation condition.
Keywords:
finitely presented group, hyperbolic group.
@article{MZM_2018_103_4_a7,
author = {I. G. Lysenok},
title = {An {Approach} to the {Study} of {Finitely} {Presented} {Groups} {Based} on the {Notion} of {Discrete} {Curvature}},
journal = {Matemati\v{c}eskie zametki},
pages = {568--575},
publisher = {mathdoc},
volume = {103},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a7/}
}
TY - JOUR AU - I. G. Lysenok TI - An Approach to the Study of Finitely Presented Groups Based on the Notion of Discrete Curvature JO - Matematičeskie zametki PY - 2018 SP - 568 EP - 575 VL - 103 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a7/ LA - ru ID - MZM_2018_103_4_a7 ER -
I. G. Lysenok. An Approach to the Study of Finitely Presented Groups Based on the Notion of Discrete Curvature. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 568-575. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a7/