Hadamard Decompositions of Nearly Commutative Algebras
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 536-543
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of Hadamard decomposition of a semisimple associative finite-dimensional complex algebra generalizes the notion of the classical Hadamard matrix, which corresponds to the case of a commutative algebra. Algebras admitting Hadamard decompositions are said to be Hadamard. The paper considers the structure of Hadamard decompositions of algebras all of whose irreducible characters are of degree $1$ except one character of degree $2$. In particular, it is shown how to construct an Hadamard matrix of order $n$ by using the Hadamard decomposition of such an algebra of dimension $n$.
Mots-clés :
orthogonal decomposition, Hadamard algebra, Hadamard matrix.
@article{MZM_2018_103_4_a4,
author = {D. N. Ivanov},
title = {Hadamard {Decompositions} of {Nearly} {Commutative} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {536--543},
publisher = {mathdoc},
volume = {103},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a4/}
}
D. N. Ivanov. Hadamard Decompositions of Nearly Commutative Algebras. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 536-543. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a4/