Hadamard Decompositions of Nearly Commutative Algebras
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 536-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of Hadamard decomposition of a semisimple associative finite-dimensional complex algebra generalizes the notion of the classical Hadamard matrix, which corresponds to the case of a commutative algebra. Algebras admitting Hadamard decompositions are said to be Hadamard. The paper considers the structure of Hadamard decompositions of algebras all of whose irreducible characters are of degree $1$ except one character of degree $2$. In particular, it is shown how to construct an Hadamard matrix of order $n$ by using the Hadamard decomposition of such an algebra of dimension $n$.
Mots-clés : orthogonal decomposition, Hadamard algebra, Hadamard matrix.
@article{MZM_2018_103_4_a4,
     author = {D. N. Ivanov},
     title = {Hadamard {Decompositions} of {Nearly} {Commutative} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {536--543},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a4/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - Hadamard Decompositions of Nearly Commutative Algebras
JO  - Matematičeskie zametki
PY  - 2018
SP  - 536
EP  - 543
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a4/
LA  - ru
ID  - MZM_2018_103_4_a4
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T Hadamard Decompositions of Nearly Commutative Algebras
%J Matematičeskie zametki
%D 2018
%P 536-543
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a4/
%G ru
%F MZM_2018_103_4_a4
D. N. Ivanov. Hadamard Decompositions of Nearly Commutative Algebras. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 536-543. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a4/

[1] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[2] D. N. Ivanov, “Ortogonalnye razlozheniya assotsiativnykh algebr i sbalansirovannye sistemy idempotentov”, Matem. sb., 189:12 (1998), 83–102 | DOI | MR | Zbl

[3] D. N. Ivanov, “Odnorodnye ortogonalnye razlozheniya kommutativnykh algebr i matritsy Adamara”, Fundament. i prikl. matem., 1:4 (1995), 1107–1110 | MR | Zbl

[4] D. N. Ivanov, “Razmernost adamarovoi algebry delitsya na 4”, UMN, 60:2 (362) (2005), 163–164 | DOI | MR | Zbl

[5] D. N. Ivanov, “Adamarovy algebry s edinstvennoi nekommutativnoi prostoi komponentoi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2011, no. 5, 46–48 | MR | Zbl

[6] D. N. Ivanov, “Adamarovy algebry”, Matem. zametki, 96:2 (2014), 207–211 | DOI | MR | Zbl

[7] D. N. Ivanov, “Adamarovy razlozheniya poluprostykh assotsiativnykh algebr”, UMN, 58:4 (352) (2003), 147–148 | DOI | MR | Zbl

[8] D. N. Ivanov, “Stepeni neprivodimykh kharakterov i razmernosti adamarovykh algebr”, Matem. zametki, 98:2 (2015), 230–236 | DOI | MR | Zbl

[9] D. N. Ivanov, “O neprivodimykh kharakterakh adamarovykh algebr”, Matem. zametki, 99:6 (2016), 897–903 | DOI | MR | Zbl

[10] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “Ortogonalnye razlozheniya prostykh algebr Li (tip $A_n$)”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 158, 1981, 105–120 | MR | Zbl

[11] P. Turán, “Eine Extremalaufgabe aus der Graphentheorie”, Mat. Fiz. Lapok, 48 (1941), 436–452 | MR | Zbl

[12] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR | Zbl