Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 617-631.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the mean-square approximation of complex functions regular in a domain $\mathscr D\subset\mathbb C$ by Fourier series with respect to an orthogonal (in $\mathscr D$) system of functions $\{\varphi_k(z)\}$, $k=0,1,2,\dots$ . For the case in which $\mathscr D=\{z\in\mathbb C:|z|1\}$, we obtain sharp estimates for the rate of convergence of the Fourier series in the orthogonal system $\{z^k\}$, $k=0,1,2,\dots$, for classes of functions defined by a special $m$th-order modulus of continuity. Exact values of the series of $n$-widths for these classes of functions are calculated.
Mots-clés : Fourier sum
Keywords: mean-square approximation, generalized modulus of continuity, Jackson–Stechkin inequality, upper bounds for best approximations, $n$-widths.
@article{MZM_2018_103_4_a13,
     author = {M. Sh. Shabozov and M. S. Saidusajnov},
     title = {Upper {Bounds} for the {Approximation} of {Certain} {Classes} of {Functions} of a {Complex} {Variable} by {Fourier} {Series} in the {Space~}$L_2$ and $n${-Widths}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {617--631},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. S. Saidusajnov
TI  - Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths
JO  - Matematičeskie zametki
PY  - 2018
SP  - 617
EP  - 631
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/
LA  - ru
ID  - MZM_2018_103_4_a13
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. S. Saidusajnov
%T Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths
%J Matematičeskie zametki
%D 2018
%P 617-631
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/
%G ru
%F MZM_2018_103_4_a13
M. Sh. Shabozov; M. S. Saidusajnov. Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 617-631. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/

[1] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR | Zbl

[2] N. P. Korneichuk, “Tochnaya konstanta v teoreme D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR, 145:3 (1962), 514–515 | MR | Zbl

[3] N. I. Chernykh, “O neravenstve Dzheksona v $L_2$”, Tr. MIAN SSSR, 88, 1967, 71–74 | MR | Zbl

[4] V. V. Zhuk, “O nekotorykh tochnykh neravenstvakh mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti”, Sib. matem. zhurn., 12:6 (1971), 1283–1291 | MR | Zbl

[5] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[6] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[7] A. G. Babenko, “O tochnoi konstante v neravenstve Dzheksona v $L^2$”, Matem. zametki, 39:5 (1986), 651–664 | MR | Zbl

[8] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstve $L_p$, Izd-vo Tulsk. un-ta, Tula, 1995

[9] M. Sh. Shabozov, G. A. Yusupov, “Nailuchshie polinomialnye priblizheniya v $L_2$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnye znacheniya ikh poperechnikov”, Matem. zametki, 90:5 (2011), 764–775 | DOI | MR | Zbl

[10] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Matem. zametki, 92:4 (2012), 497–514 | DOI | MR | Zbl

[11] V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_2(D, p(z))$”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 999–1004 | MR | Zbl

[12] K. Tukhliev, “Srednekvadraticheskoe priblizhenie funktsii ryadami Fure–Besselya i znacheniya poperechnikov nekotorykh funktsionalnykh klassov”, Chebyshevskii sb., 17:4 (2016), 141–156 | DOI | Zbl

[13] S. B. Vakarchuk, “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva–Ermita i poperechniki funktsionalnykh klassov”, Matem. zametki, 95:5 (2014), 666–684 | DOI | MR | Zbl

[14] M. Sh. Shabozov, K. Tukhliev, “Neravenstva Dzheksona — Stechkina c obobschennymi modulyami nepreryvnosti i poperechniki nekotorykh klassov funktsii”, Tr. IMM UrO RAN, 21, no. 4, 2015, 292–308 | MR

[15] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR | Zbl

[16] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985 | MR | Zbl

[17] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR