Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 617-631
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of the mean-square approximation of complex functions regular in a domain $\mathscr D\subset\mathbb C$ by Fourier series with respect to an orthogonal (in $\mathscr D$) system of functions $\{\varphi_k(z)\}$, $k=0,1,2,\dots$ . For the case in which $\mathscr D=\{z\in\mathbb C:|z|1\}$, we obtain sharp estimates for the rate of convergence of the Fourier series in the orthogonal system $\{z^k\}$, $k=0,1,2,\dots$, for classes of functions defined by a special $m$th-order modulus of continuity. Exact values of the series of $n$-widths for these classes of functions are calculated.
Mots-clés :
Fourier sum
Keywords: mean-square approximation, generalized modulus of continuity, Jackson–Stechkin inequality, upper bounds for best approximations, $n$-widths.
Keywords: mean-square approximation, generalized modulus of continuity, Jackson–Stechkin inequality, upper bounds for best approximations, $n$-widths.
@article{MZM_2018_103_4_a13,
author = {M. Sh. Shabozov and M. S. Saidusajnov},
title = {Upper {Bounds} for the {Approximation} of {Certain} {Classes} of {Functions} of a {Complex} {Variable} by {Fourier} {Series} in the {Space~}$L_2$ and $n${-Widths}},
journal = {Matemati\v{c}eskie zametki},
pages = {617--631},
publisher = {mathdoc},
volume = {103},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/}
}
TY - JOUR AU - M. Sh. Shabozov AU - M. S. Saidusajnov TI - Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths JO - Matematičeskie zametki PY - 2018 SP - 617 EP - 631 VL - 103 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/ LA - ru ID - MZM_2018_103_4_a13 ER -
%0 Journal Article %A M. Sh. Shabozov %A M. S. Saidusajnov %T Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths %J Matematičeskie zametki %D 2018 %P 617-631 %V 103 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/ %G ru %F MZM_2018_103_4_a13
M. Sh. Shabozov; M. S. Saidusajnov. Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space~$L_2$ and $n$-Widths. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 617-631. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a13/