On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 604-608.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a necessary and sufficient condition for the series of absolute values of blocks of Fourier series elements and blocks of series of summands in Parseval's identity to converge in the class of two-variable functions of bounded variation in the sense of Hardy.
Keywords: functions of bounded variation in two variables, Parseval's identity.
Mots-clés : Fourier coefficients
@article{MZM_2018_103_4_a11,
     author = {S. A. Telyakovskii},
     title = {On the {Convergence} of {Block} {Fourier} {Series} of {Functions} of {Bounded} {Variation} in {Two} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {604--608},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables
JO  - Matematičeskie zametki
PY  - 2018
SP  - 604
EP  - 608
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/
LA  - ru
ID  - MZM_2018_103_4_a11
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables
%J Matematičeskie zametki
%D 2018
%P 604-608
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/
%G ru
%F MZM_2018_103_4_a11
S. A. Telyakovskii. On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 604-608. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/

[1] W. H. Young, “On the integration of Fourier series”, Proc. London Math. Soc. (2), 9 (1911), 449–462 | DOI | MR | Zbl

[2] S. A. Telyakovskii, “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, Nauka, M., 1997, 378–386 | MR | Zbl

[3] A. S. Belov, S. A. Telyakovskii, “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Matem. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl

[4] F. Móricz, “Pointwise behavior of double Fourier series of functions of bounded variation”, Monatsh. Math., 148:1 (2006), 51–59 | DOI | MR | Zbl

[5] X. Z. Krasniqi, “On a class of double trigonometric series of functions of bounded variation”, East J. Approx., 17:4 (2011), 377–384 | MR | Zbl

[6] F. Móricz, “Pointwise convergence of double Fourier integrals of functions of bounded variation over $R^2$”, J. Math. Anal. Appl., 424:2 (2015), 1530–1543 | DOI | MR | Zbl