On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 604-608
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a necessary and sufficient condition for the series of absolute values of blocks of Fourier series elements and blocks of series of summands in Parseval's identity to converge in the class of two-variable functions of bounded variation in the sense of Hardy.
Keywords:
functions of bounded variation in two variables, Parseval's identity.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{MZM_2018_103_4_a11,
author = {S. A. Telyakovskii},
title = {On the {Convergence} of {Block} {Fourier} {Series} of {Functions} of {Bounded} {Variation} in {Two} {Variables}},
journal = {Matemati\v{c}eskie zametki},
pages = {604--608},
publisher = {mathdoc},
volume = {103},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/}
}
TY - JOUR AU - S. A. Telyakovskii TI - On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables JO - Matematičeskie zametki PY - 2018 SP - 604 EP - 608 VL - 103 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/ LA - ru ID - MZM_2018_103_4_a11 ER -
S. A. Telyakovskii. On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 604-608. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/