Mots-clés : Fourier coefficients
@article{MZM_2018_103_4_a11,
author = {S. A. Telyakovskii},
title = {On the {Convergence} of {Block} {Fourier} {Series} of {Functions} of {Bounded} {Variation} in {Two} {Variables}},
journal = {Matemati\v{c}eskie zametki},
pages = {604--608},
year = {2018},
volume = {103},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/}
}
S. A. Telyakovskii. On the Convergence of Block Fourier Series of Functions of Bounded Variation in Two Variables. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 604-608. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a11/
[1] W. H. Young, “On the integration of Fourier series”, Proc. London Math. Soc. (2), 9 (1911), 449–462 | DOI | MR | Zbl
[2] S. A. Telyakovskii, “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, Nauka, M., 1997, 378–386 | MR | Zbl
[3] A. S. Belov, S. A. Telyakovskii, “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Matem. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl
[4] F. Móricz, “Pointwise behavior of double Fourier series of functions of bounded variation”, Monatsh. Math., 148:1 (2006), 51–59 | DOI | MR | Zbl
[5] X. Z. Krasniqi, “On a class of double trigonometric series of functions of bounded variation”, East J. Approx., 17:4 (2011), 377–384 | MR | Zbl
[6] F. Móricz, “Pointwise convergence of double Fourier integrals of functions of bounded variation over $R^2$”, J. Math. Anal. Appl., 424:2 (2015), 1530–1543 | DOI | MR | Zbl