On Singular points of Meromorphic Functions Determined by Continued Fractions
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 490-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that Leighton's conjecture about singular points of meromorphic functions represented by C-fractions $\mathscr K _{n=1}^\infty(a_nz^{\alpha_n}/1)$ with exponents $\alpha_1,\alpha_2,\dots$ tending to infinity, which was proved by Gonchar for a nondecreasing sequence of exponents, holds also for meromorphic functions represented by continued fractions $\mathscr K _{n=1}^\infty(a_nA_n(z)/1)$, where $A_1,A_2,\dots$ is a sequence of polynomials with limit distribution of zeros whose degrees tend to infinity.
Keywords: continued fraction, Hankel determinant, transfinite diameter, meromorphic continuation.
@article{MZM_2018_103_4_a1,
     author = {V. I. Buslaev},
     title = {On {Singular} points of {Meromorphic} {Functions} {Determined} by {Continued} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {490--502},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On Singular points of Meromorphic Functions Determined by Continued Fractions
JO  - Matematičeskie zametki
PY  - 2018
SP  - 490
EP  - 502
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/
LA  - ru
ID  - MZM_2018_103_4_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On Singular points of Meromorphic Functions Determined by Continued Fractions
%J Matematičeskie zametki
%D 2018
%P 490-502
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/
%G ru
%F MZM_2018_103_4_a1
V. I. Buslaev. On Singular points of Meromorphic Functions Determined by Continued Fractions. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 490-502. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/

[1] U. Dzhouns, V. Tron, Nepreryvnye drobi. Analiticheskaya teoriya i prilozheniya, Mir, M., 1985 | MR | Zbl

[2] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand, New York, 1948 | MR | Zbl

[3] J. Worpitsky, “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39

[4] W. T. Scott, H. S. Wall, “Continued-fraction expansions for arbitrary power series”, Ann. of Math. (2), 41:2 (1940), 328–349 | DOI | MR | Zbl

[5] W. J. Thron, “Singular points of functions defined by C-fractions”, Proc. Nat. Acad. Sci. U. S. A., 36 (1950), 51–54 | DOI | MR | Zbl

[6] A. A. Gonchar, “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Matem. sb., 197:10 (2006), 3–14 | DOI | MR | Zbl

[7] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134 (176):3 (11) (1987), 306–352 | MR | Zbl

[8] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl

[9] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI | MR | Zbl

[10] A. V.Komlov, S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6 (426) (2015), 211–212 | DOI | MR | Zbl

[11] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (425) (2015), 121–174 | DOI | MR | Zbl

[12] V. I. Buslaev, “Emkost ratsionalnogo proobraza kompakta”, Matem. zametki, 100:6 (2016), 790–799 | DOI | MR | Zbl

[13] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl

[14] S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5 (431) (2016), 183–184 | DOI | MR | Zbl

[15] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2 (428) (2016), 205–206 | DOI | MR | Zbl

[16] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI | MR | Zbl

[17] E. B Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl

[18] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | MR | Zbl

[19] V. I. Buslaev, “O nepreryvnykh drobyakh s predelno periodicheskimi koeffitsientami”, Matem. sb., 209:2 (2018), 47–65 | DOI

[20] V. I. Buslaev, “O teoreme Van Fleka dlya predelno periodicheskikh nepreryvnykh drobei obschego vida”, Kompleksnyi analiz i ego prilozheniya, Tr. MIAN, 298, MAIK, M., 2017, 75–100 | DOI

[21] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsberichte Akad. Berlin, 1929 (1929), 55–62 | Zbl

[22] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR | Zbl