Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_4_a1, author = {V. I. Buslaev}, title = {On {Singular} points of {Meromorphic} {Functions} {Determined} by {Continued} {Fractions}}, journal = {Matemati\v{c}eskie zametki}, pages = {490--502}, publisher = {mathdoc}, volume = {103}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/} }
V. I. Buslaev. On Singular points of Meromorphic Functions Determined by Continued Fractions. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 490-502. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/
[1] U. Dzhouns, V. Tron, Nepreryvnye drobi. Analiticheskaya teoriya i prilozheniya, Mir, M., 1985 | MR | Zbl
[2] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand, New York, 1948 | MR | Zbl
[3] J. Worpitsky, “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39
[4] W. T. Scott, H. S. Wall, “Continued-fraction expansions for arbitrary power series”, Ann. of Math. (2), 41:2 (1940), 328–349 | DOI | MR | Zbl
[5] W. J. Thron, “Singular points of functions defined by C-fractions”, Proc. Nat. Acad. Sci. U. S. A., 36 (1950), 51–54 | DOI | MR | Zbl
[6] A. A. Gonchar, “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Matem. sb., 197:10 (2006), 3–14 | DOI | MR | Zbl
[7] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134 (176):3 (11) (1987), 306–352 | MR | Zbl
[8] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl
[9] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI | MR | Zbl
[10] A. V.Komlov, S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6 (426) (2015), 211–212 | DOI | MR | Zbl
[11] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (425) (2015), 121–174 | DOI | MR | Zbl
[12] V. I. Buslaev, “Emkost ratsionalnogo proobraza kompakta”, Matem. zametki, 100:6 (2016), 790–799 | DOI | MR | Zbl
[13] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl
[14] S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5 (431) (2016), 183–184 | DOI | MR | Zbl
[15] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2 (428) (2016), 205–206 | DOI | MR | Zbl
[16] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI | MR | Zbl
[17] E. B Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl
[18] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | MR | Zbl
[19] V. I. Buslaev, “O nepreryvnykh drobyakh s predelno periodicheskimi koeffitsientami”, Matem. sb., 209:2 (2018), 47–65 | DOI
[20] V. I. Buslaev, “O teoreme Van Fleka dlya predelno periodicheskikh nepreryvnykh drobei obschego vida”, Kompleksnyi analiz i ego prilozheniya, Tr. MIAN, 298, MAIK, M., 2017, 75–100 | DOI
[21] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsberichte Akad. Berlin, 1929 (1929), 55–62 | Zbl
[22] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR | Zbl