On Singular points of Meromorphic Functions Determined by Continued Fractions
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 490-502

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that Leighton's conjecture about singular points of meromorphic functions represented by C-fractions $\mathscr K _{n=1}^\infty(a_nz^{\alpha_n}/1)$ with exponents $\alpha_1,\alpha_2,\dots$ tending to infinity, which was proved by Gonchar for a nondecreasing sequence of exponents, holds also for meromorphic functions represented by continued fractions $\mathscr K _{n=1}^\infty(a_nA_n(z)/1)$, where $A_1,A_2,\dots$ is a sequence of polynomials with limit distribution of zeros whose degrees tend to infinity.
Keywords: continued fraction, Hankel determinant, transfinite diameter, meromorphic continuation.
@article{MZM_2018_103_4_a1,
     author = {V. I. Buslaev},
     title = {On {Singular} points of {Meromorphic} {Functions} {Determined} by {Continued} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {490--502},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On Singular points of Meromorphic Functions Determined by Continued Fractions
JO  - Matematičeskie zametki
PY  - 2018
SP  - 490
EP  - 502
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/
LA  - ru
ID  - MZM_2018_103_4_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On Singular points of Meromorphic Functions Determined by Continued Fractions
%J Matematičeskie zametki
%D 2018
%P 490-502
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/
%G ru
%F MZM_2018_103_4_a1
V. I. Buslaev. On Singular points of Meromorphic Functions Determined by Continued Fractions. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 490-502. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a1/