Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_4_a0, author = {E. R. Avakov and G. G. Magaril-Il'yaev}, title = {An {Implicit} {Function} {Theorem} for {Inclusions} {Defined} by {Close} {Mappings}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--489}, publisher = {mathdoc}, volume = {103}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/} }
TY - JOUR AU - E. R. Avakov AU - G. G. Magaril-Il'yaev TI - An Implicit Function Theorem for Inclusions Defined by Close Mappings JO - Matematičeskie zametki PY - 2018 SP - 483 EP - 489 VL - 103 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/ LA - ru ID - MZM_2018_103_4_a0 ER -
E. R. Avakov; G. G. Magaril-Il'yaev. An Implicit Function Theorem for Inclusions Defined by Close Mappings. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/
[1] S. M. Robinson, “Stability theory for systems of inequalities. II. Differentiable nonlinear systems”, SIAM J. Numer. Anal., 13:4 (1976), 497–513 | DOI | MR | Zbl
[2] J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000 | MR | Zbl
[3] E. H. Chabi, H. Zouaki, “Existence of a continuous solution of parametric nonlinear equation with constraints”, J. Convex Anal., 7:2 (2000), 413–426 | MR | Zbl
[4] E. R. Avakov, G. G. Magaril-Ilyaev, “Teorema o neyavnoi funktsii dlya vklyuchenii”, Matem. zametki, 91:6 (2012), 813–818 | DOI | MR | Zbl