An Implicit Function Theorem for Inclusions Defined by Close Mappings
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 483-489
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with the question of the solvability of inclusions $F(x,\sigma)\in Q$ for mappings $F$ close, in some metrics, to a given mapping $\widehat{F}$.
Keywords:
implicit function, Brouwer's fixed point theorem, Newton's method.
@article{MZM_2018_103_4_a0,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {An {Implicit} {Function} {Theorem} for {Inclusions} {Defined} by {Close} {Mappings}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--489},
year = {2018},
volume = {103},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/}
}
E. R. Avakov; G. G. Magaril-Il'yaev. An Implicit Function Theorem for Inclusions Defined by Close Mappings. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/
[1] S. M. Robinson, “Stability theory for systems of inequalities. II. Differentiable nonlinear systems”, SIAM J. Numer. Anal., 13:4 (1976), 497–513 | DOI | MR | Zbl
[2] J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000 | MR | Zbl
[3] E. H. Chabi, H. Zouaki, “Existence of a continuous solution of parametric nonlinear equation with constraints”, J. Convex Anal., 7:2 (2000), 413–426 | MR | Zbl
[4] E. R. Avakov, G. G. Magaril-Ilyaev, “Teorema o neyavnoi funktsii dlya vklyuchenii”, Matem. zametki, 91:6 (2012), 813–818 | DOI | MR | Zbl