An Implicit Function Theorem for Inclusions Defined by Close Mappings
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 483-489
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the question of the solvability of inclusions $F(x,\sigma)\in Q$ for mappings $F$ close, in some metrics, to a given mapping $\widehat{F}$.
Keywords:
implicit function, Brouwer's fixed point theorem, Newton's method.
@article{MZM_2018_103_4_a0,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {An {Implicit} {Function} {Theorem} for {Inclusions} {Defined} by {Close} {Mappings}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--489},
publisher = {mathdoc},
volume = {103},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/}
}
TY - JOUR AU - E. R. Avakov AU - G. G. Magaril-Il'yaev TI - An Implicit Function Theorem for Inclusions Defined by Close Mappings JO - Matematičeskie zametki PY - 2018 SP - 483 EP - 489 VL - 103 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/ LA - ru ID - MZM_2018_103_4_a0 ER -
E. R. Avakov; G. G. Magaril-Il'yaev. An Implicit Function Theorem for Inclusions Defined by Close Mappings. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a0/