On the Curvature Properties of Manifolds with Deformed $G_2$ Structures
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 437-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the curvature properties of a manifold with structure group $G_2$ whose fundamental 3-form is deformed by a Killing vector field of unit length. We obtain some results concerning conditions under which this manifold is flat, Einstein, or isometric to the unit sphere.
Mots-clés : $G_2$-structure
Keywords: curvature.
@article{MZM_2018_103_3_a8,
     author = {N. Ozdemir and S. Aktay},
     title = {On the {Curvature} {Properties} of {Manifolds} with {Deformed} $G_2$ {Structures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {437--444},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a8/}
}
TY  - JOUR
AU  - N. Ozdemir
AU  - S. Aktay
TI  - On the Curvature Properties of Manifolds with Deformed $G_2$ Structures
JO  - Matematičeskie zametki
PY  - 2018
SP  - 437
EP  - 444
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a8/
LA  - ru
ID  - MZM_2018_103_3_a8
ER  - 
%0 Journal Article
%A N. Ozdemir
%A S. Aktay
%T On the Curvature Properties of Manifolds with Deformed $G_2$ Structures
%J Matematičeskie zametki
%D 2018
%P 437-444
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a8/
%G ru
%F MZM_2018_103_3_a8
N. Ozdemir; S. Aktay. On the Curvature Properties of Manifolds with Deformed $G_2$ Structures. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 437-444. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a8/

[1] S. Karigiannis, “Deformations of $G_2$ and $\operatorname{Spin}(7)$ structures on manifolds”, Canad. J. Math., 57:5 (2005), 1012–1055 | DOI | MR | Zbl

[2] N. Özdemir, Ş. Aktay, “On deformations of $G_2$ structures by Killing vector fields”, Adv. Geom., 14:4 (2014), 683–690 | DOI | MR | Zbl

[3] J. M. Lee, Riemannian Manifolds. An Introduction to Curvature, Springer-Verlag, New York, 1997 | MR | Zbl

[4] R. L. Bryant, “Metrics with exceptional holonomy”, Ann. of Math. (2), 126:3 (1987), 525–576 | DOI | MR | Zbl

[5] M. Fernández, A. Gray, “Riemannian manifolds with structure group $G_2$”, Ann. Mat. Pura Appl. (4), 132 (1982), 19–45 | DOI | MR | Zbl

[6] I. Agricola, T. Friedrich, “$3$-Sasakian manifolds in dimension seven, their spinors and $G_2$-structures”, J. Geom. Phys., 60:2 (2010), 326–332 | DOI | MR | Zbl

[7] Th. Friedrich, I. Kath, A. Moroianu, U. Semmelmann, “On nearly parallel $G_2$ structures”, J. Geom. Phys., 23:3-4 (1997), 259–286 | DOI | MR | Zbl

[8] C. P. Boyer, K. Galicki, Sasakian Geometry, Oxford Univ. Press, Oxford, 2007 | MR | Zbl