Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_3_a8, author = {N. Ozdemir and S. Aktay}, title = {On the {Curvature} {Properties} of {Manifolds} with {Deformed} $G_2$ {Structures}}, journal = {Matemati\v{c}eskie zametki}, pages = {437--444}, publisher = {mathdoc}, volume = {103}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a8/} }
N. Ozdemir; S. Aktay. On the Curvature Properties of Manifolds with Deformed $G_2$ Structures. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 437-444. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a8/
[1] S. Karigiannis, “Deformations of $G_2$ and $\operatorname{Spin}(7)$ structures on manifolds”, Canad. J. Math., 57:5 (2005), 1012–1055 | DOI | MR | Zbl
[2] N. Özdemir, Ş. Aktay, “On deformations of $G_2$ structures by Killing vector fields”, Adv. Geom., 14:4 (2014), 683–690 | DOI | MR | Zbl
[3] J. M. Lee, Riemannian Manifolds. An Introduction to Curvature, Springer-Verlag, New York, 1997 | MR | Zbl
[4] R. L. Bryant, “Metrics with exceptional holonomy”, Ann. of Math. (2), 126:3 (1987), 525–576 | DOI | MR | Zbl
[5] M. Fernández, A. Gray, “Riemannian manifolds with structure group $G_2$”, Ann. Mat. Pura Appl. (4), 132 (1982), 19–45 | DOI | MR | Zbl
[6] I. Agricola, T. Friedrich, “$3$-Sasakian manifolds in dimension seven, their spinors and $G_2$-structures”, J. Geom. Phys., 60:2 (2010), 326–332 | DOI | MR | Zbl
[7] Th. Friedrich, I. Kath, A. Moroianu, U. Semmelmann, “On nearly parallel $G_2$ structures”, J. Geom. Phys., 23:3-4 (1997), 259–286 | DOI | MR | Zbl
[8] C. P. Boyer, K. Galicki, Sasakian Geometry, Oxford Univ. Press, Oxford, 2007 | MR | Zbl