On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 417-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a semi-infinite cylinder, we consider the behavior of generalized solutions of second-order divergence-form elliptic equations satisfying the third boundary condition on the lateral surface of the cylinder.
Mots-clés : elliptic equation
Keywords: Robin problem, dichotomy of solutions, trichotomy of solutions, stabilization.
@article{MZM_2018_103_3_a7,
     author = {A. V. Neklyudov},
     title = {On the {Robin} {Problem} for {Second-Order} {Elliptic} {Equations} in {Cylindrical} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--436},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains
JO  - Matematičeskie zametki
PY  - 2018
SP  - 417
EP  - 436
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/
LA  - ru
ID  - MZM_2018_103_3_a7
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains
%J Matematičeskie zametki
%D 2018
%P 417-436
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/
%G ru
%F MZM_2018_103_3_a7
A. V. Neklyudov. On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 417-436. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/

[1] E. M. Landis, G. P. Panasenko, “Ob odnom variante teoremy tipa Fragmena–Lindelefa dlya ellipticheskikh uravnenii s koeffitsientami, periodicheskimi po vsem peremennym, krome odnoi”, Tr. sem. im. I. G. Petrovskogo, 5 (1979), 105–136 | MR | Zbl

[2] O. A. Oleinik, G. A. Iosifyan, “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112 (154):4 (8) (1980), 588–610 | MR | Zbl

[3] O. A. Oleinik, G. A. Yosifian, “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Rational Mech. Anal., 78:1 (1982), 29–53 | MR | Zbl

[4] A. V. Neklyudov, “O zadache Neimana dlya divergentnykh ellipticheskikh uravnenii vysokogo poryadka v neogranichennoi oblasti, blizkoi k tsilindru”, Tr. sem. im. I. G. Petrovskogo, 16 (1992), 191–217 | Zbl

[5] K. P. Samaitis, “Otsenki reshenii zadach Neimana i Robena dlya uravneniya Laplasa v tsilindre”, Differents. uravneniya, 38:7 (2002), 995–996 | MR | Zbl

[6] K. P. Samaitis, “Nekotorye otsenki reshenii dlya uravneniya Laplasa v tsilindroobraznykh oblastyakh”, Differents. uravneniya, 38:8 (2002), 1105–1112 | MR | Zbl

[7] A. V. Neklyudov, “O resheniyakh tretei kraevoi zadachi dlya uravneniya Laplasa v polubeskonechnom tsilindre”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 48–58 | Zbl

[8] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[9] S. S. Lakhturov, “Ob asimptotike reshenii vtoroi kraevoi zadachi v neogranichennykh oblastyakh”, UMN, 35:4 (214) (1980), 195–196 | MR | Zbl

[10] A. V. Neklyudov, “Povedenie reshenii polulineinogo ellipticheskogo uravneniya vtorogo poryadka vida $Lu=e^u$ v beskonechnom tsilindre”, Matem. zametki, 85:3 (2009), 408–420 | DOI | MR | Zbl