On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 417-436

Voir la notice de l'article provenant de la source Math-Net.Ru

In a semi-infinite cylinder, we consider the behavior of generalized solutions of second-order divergence-form elliptic equations satisfying the third boundary condition on the lateral surface of the cylinder.
Mots-clés : elliptic equation
Keywords: Robin problem, dichotomy of solutions, trichotomy of solutions, stabilization.
@article{MZM_2018_103_3_a7,
     author = {A. V. Neklyudov},
     title = {On the {Robin} {Problem} for {Second-Order} {Elliptic} {Equations} in {Cylindrical} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--436},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains
JO  - Matematičeskie zametki
PY  - 2018
SP  - 417
EP  - 436
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/
LA  - ru
ID  - MZM_2018_103_3_a7
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains
%J Matematičeskie zametki
%D 2018
%P 417-436
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/
%G ru
%F MZM_2018_103_3_a7
A. V. Neklyudov. On the Robin Problem for Second-Order Elliptic Equations in Cylindrical Domains. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 417-436. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a7/