On the Dimension of Preimages of Certain Paracompact Spaces
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 404-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $X$ is a normal space which admits a closed fiberwise strongly zero-dimensional continuous map onto a stratifiable space $Y$ in a certain class (an S-space), then $\operatorname{Ind}{X}=\operatorname{dim}{X}$. This equality also holds if ${Y}$ is a paracompact $\sigma$-space and $\operatorname{ind}{Y}=0$. It is shown that any closed network of a closed interval or the real line is an S-network. A simple proof of the Katětov–Morita inequality for paracompact $\sigma$-spaces (and, hence, for stratifiable spaces) is given.
Mots-clés : dimension, stratifiable space.
Keywords: network, $\sigma$-space
@article{MZM_2018_103_3_a6,
     author = {I. M. Leibo},
     title = {On the {Dimension} of {Preimages} of {Certain} {Paracompact} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {404--416},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a6/}
}
TY  - JOUR
AU  - I. M. Leibo
TI  - On the Dimension of Preimages of Certain Paracompact Spaces
JO  - Matematičeskie zametki
PY  - 2018
SP  - 404
EP  - 416
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a6/
LA  - ru
ID  - MZM_2018_103_3_a6
ER  - 
%0 Journal Article
%A I. M. Leibo
%T On the Dimension of Preimages of Certain Paracompact Spaces
%J Matematičeskie zametki
%D 2018
%P 404-416
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a6/
%G ru
%F MZM_2018_103_3_a6
I. M. Leibo. On the Dimension of Preimages of Certain Paracompact Spaces. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 404-416. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a6/

[1] M. Katetov, “O razmernosti metricheskikh prostranstv”, Dokl. AN SSSR, 79:2 (1951), 189–191 | MR | Zbl

[2] B. A. Pasynkov, “Ob odnom klasse otobrazhenii i o razmernosti normalnykh prostranstv”, Sib. matem. zhurn., 5 (1964), 356–376 | MR | Zbl

[3] B. A. Pasynkov, “O razmernosti prostranstv s bikompaktnoi gruppoi preobrazovanii”, UMN, 31:5 (191) (1976), 112–120 | MR | Zbl

[4] Oka Shinpei, “An inequality concerning three fundamental dimensions of paracompact $\sigma$-spaces”, Proc. Amer. Math. Soc., 83:4 (1981), 790–792 | MR | Zbl

[5] I. M. Leibo, “O razmernosti nekotorykh prostranstv”, Dokl. AN SSSR, 262:1 (1982), 26–29 | MR | Zbl

[6] I. M. Leibo, “O ravenstve razmernostei dlya zamknutykh obrazov metricheskikh prostranstv”, Dokl. AN SSSR, 216:3 (1974), 498–501 | MR | Zbl

[7] I. M. Leibo, “O zamknutykh obrazakh metricheskikh prostranstv”, Dokl. AN SSSR, 224:4 (1975), 756–759 | MR | Zbl

[8] S. Oka, “Dimension of stratifiable spaces”, Trans. Amer. Math. Soc., 275:1 (1983), 231–243 | DOI | MR | Zbl

[9] K. L Kozlov, B. A. Pasynkov, “Covering dimension of topological products”, J. Math. Sci. (N.Y.), 144:3 (2007), 4031–4110 | DOI | MR | Zbl

[10] A. V. Arkhangelskii, “Klassy topologicheskikh grupp”, UMN, 36:3 (219) (1981), 127–146 | MR | Zbl

[11] I. M. Leibo, “O razmernosti zamknutykh obrazov metricheskikh prostranstv”, SERDIKA B'lgarsko matematichesko spisanie, 8:4 (1982), 395–407 http://www.math.bas.bg/serdica/1982/1982-395-407.pdf

[12] K. Nagami, “Weak $L$-structures and dimension”, Fund. Math., 112 (1981), 231–240 | DOI | MR | Zbl

[13] F. Siwiec, Jun-iti Nagata, “A note on nets and metrization”, Proc. Japan Acad., 44:7 (1968), 623–627 | DOI | MR | Zbl

[14] C. J. R. Borges, “On stratifiable spaces”, Pacific J. Math., 17 (1966), 1–16 | DOI | MR | Zbl

[15] V. I. Ponomarev, “Parakompakty, ikh proektsionnye spektry i nepreryvnye otobrazheniya”, Matem. sb., 60 (102):1 (1963), 89–119 | MR | Zbl

[16] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti. Vvedenie v teoriyu topologicheskikh prostranstv i obschuyu teoriyu razmernosti, Nauka, M., 1973 | MR | Zbl

[17] Ju. H. Bregman, “Some factorization theorems for paracompact $\sigma$-spaces”, Comment. Math. Univ. Carolin., 28:2 (1987), 211–216 | MR | Zbl

[18] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR | Zbl

[19] A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR | Zbl

[20] I. M. Leibo, “O nekotorykh svoistvakh $\sigma$-prostranstv”, Matematicheskie chteniya pamyati M. Ya. Suslina, Saratovskii gos. un-t, Saratov, 1989, 16