Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_3_a5, author = {S. P. Zubova and V. I. Uskov}, title = {Asymptotic {Solution} of the {Cauchy} {Problem} for a {First-Order} {Equation} with a {Small} {Parameter} in a {Banach} {Space.} {The} {Regular} {Case}}, journal = {Matemati\v{c}eskie zametki}, pages = {392--403}, publisher = {mathdoc}, volume = {103}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a5/} }
TY - JOUR AU - S. P. Zubova AU - V. I. Uskov TI - Asymptotic Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case JO - Matematičeskie zametki PY - 2018 SP - 392 EP - 403 VL - 103 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a5/ LA - ru ID - MZM_2018_103_3_a5 ER -
%0 Journal Article %A S. P. Zubova %A V. I. Uskov %T Asymptotic Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case %J Matematičeskie zametki %D 2018 %P 392-403 %V 103 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a5/ %G ru %F MZM_2018_103_3_a5
S. P. Zubova; V. I. Uskov. Asymptotic Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 392-403. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a5/
[1] S. P. Zubova, E. V. Raetskaya, “Issledovanie zhestkosti deskriptornoi dinamicheskoi sistemy v banakhovom prostranstve”, Problemy matematicheskogo analiza, 79 (2015), 127–132
[2] S. P. Zubova, Svoistva vozmuschennogo fredgolmovskogo operatora. Reshenie differentsialnogo uravneniya s fredgolmovskim operatorom pri proizvodnoi, Dep. v VINITI No 2516-V91, Voronezh, 1991
[3] P. L. Christiansen, P. S Lomdahl, V. Muto, “On a Toda lattice model with a transversal degree of freedom”, Nonlinearity, 4:2 (1991), 477–501 | DOI | MR | Zbl
[4] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003 | MR | Zbl
[5] Nguen Khak Diep, V. F. Chistyakov, “O modelirovanii s ispolzovaniem differentsialno-algebraicheskikh uravnenii v chastnykh proizvodnykh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:1 (2013), 98–111
[6] S. M. Nikolskii, “Lineinye uravneniya v lineinykh normirovannykh prostranstvakh”, Izv. AN SSSR. Ser. matem., 7:3 (1943), 147–166 | MR | Zbl
[7] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl
[8] E. V. Raetskaya, Ob issledovanii povedeniya resheniya odnogo singulyarno vozmuschennogo uravneniya, Dep. v VINITI No 1039-V2002, Voronezh, 2002
[9] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, Librokom, M., 2009 | MR
[10] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR | Zbl
[11] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (77) (1957), 3–122 | MR | Zbl
[12] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl
[13] V. I. Uskov, S. P. Zubova, “Asimptoticheskoe reshenie zadachi Koshi dlya deskriptornogo uravneniya s malym parametrom v banakhovom prostranstve”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina, Nauchnaya kniga, Voronezh, 2016, 175–177