The Second Boundary-Value Problem in a Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Partial Derivative
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 460-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the second boundary-value problem in a half-strip for a differential equation with Bessel operator and the Riemann–Liouville partial derivative. In the case of a zero initial condition, a representation of the solution is obtained in terms of the Fox $H$-function. The uniqueness of the solution is proved for the class of functions satisfying an analog of the Tikhonov condition.
Mots-clés : parabolic-type equation, fractional-order diffusion
Keywords: Bessel operator, Riemann–Liouville derivative, second boundary-value problem in a half-strip, Fox $H$-function, Tikhonov condition, integral transformation with kernel containing the Wright function.
@article{MZM_2018_103_3_a10,
     author = {F. G. Khushtova},
     title = {The {Second} {Boundary-Value} {Problem} in a {Half-Strip} for a {Parabolic-Type} {Equation} with {Bessel} {Operator} and {Riemann--Liouville} {Partial} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {460--470},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a10/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - The Second Boundary-Value Problem in a Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Partial Derivative
JO  - Matematičeskie zametki
PY  - 2018
SP  - 460
EP  - 470
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a10/
LA  - ru
ID  - MZM_2018_103_3_a10
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T The Second Boundary-Value Problem in a Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Partial Derivative
%J Matematičeskie zametki
%D 2018
%P 460-470
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a10/
%G ru
%F MZM_2018_103_3_a10
F. G. Khushtova. The Second Boundary-Value Problem in a Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Partial Derivative. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 460-470. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a10/

[1] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[2] Yu. P. Gorkov, “Postroenie fundamentalnogo resheniya parabolicheskogo uravneniya s vyrozhdeniem”, Vych. met. programmirovanie, 6:1 (2005), 66–70

[3] S. A. Tersenov, Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Sibirsk. otdel., M., 1985 | MR | Zbl

[4] S. Kh. Gekkieva, “Kraevaya zadacha dlya obobschennogo uravneniya perenosa s drobnoi proizvodnoi v polubeskonechnoi oblasti”, Izv. Kabardino-Balkarskogo nauchn. tsentra RAN, 1:8 (2002), 6–8

[5] A. A. Voroshilov, A. A. Kilbas, “Zadacha tipa Koshi dlya diffuzionno-volnovogo uravneniya s chastnoi proizvodnoi Rimana–Liuvillya”, Dokl. AN, 406:1 (2006), 12–16 | MR | Zbl

[6] A. N. Kochubei, “Zadacha Koshi dlya evolyutsionnykh uravnenii drobnogo poryadka”, Differents. uravneniya, 25:8 (1989), 1359–1368 | MR | Zbl

[7] A. N. Kochubei, “Diffuziya drobnogo poryadka”, Differents. uravneniya, 26:4 (1990), 660–670 | MR | Zbl

[8] M. Giona, H. E. Roman, “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior”, J. Phys. A, 25:8 (1992), 2093–2105 | DOI | MR | Zbl

[9] R. Metzler, W. G. Glöckle, T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion”, Phys. A, 211:1 (1994), 13–24 | DOI

[10] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl

[11] R. Metzler, J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, J. Phys. A, 37 (2004), R161–R208 | DOI | MR | Zbl

[12] F. G. Khushtova, “Pervaya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Matem. zametki, 99:6 (2016), 921–928 | DOI | MR | Zbl

[13] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. V 3 t. T. 3. Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003 | MR | Zbl

[14] A. A. Kilbas, M. Saigo, $H$-Transform. Theory and Applications, Anal. Methods Spec. Funct., 9, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl

[15] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[16] D. S. Kuznetsov, Spetsialnye funktsii, Vysshaya shkola, M., 1965 | MR

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974 | MR | Zbl

[18] R. Gorenflo, Y. Luchko, F. Mainardi, “Analytical properties and applications of the Wright function”, Fract. Calc. Appl. Anal., 2:4 (1999), 383–414 | MR | Zbl

[19] F. G. Khushtova, “Fundamentalnoe reshenie modelnogo uravneniya anomalnoi diffuzii drobnogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:4 (2015), 722–735 | DOI