Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 336-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

An embedding theorem for spaces of functions of positive smoothness defined on irregular domains of $n$-dimensional Euclidean space in Lebesgue spaces is proved. The statement of the theorem depends on the geometric parameters of the domains of the functions.
Keywords: embedding theorem, spaces of functions of positive smoothness, irregular domain
Mots-clés : Lebesgue spaces.
@article{MZM_2018_103_3_a1,
     author = {O. V. Besov},
     title = {Embeddings of {Spaces} of {Functions} of {Positive} {Smoothness} on {Irregular} {Domains} in {Lebesgue} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {336--345},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a1/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces
JO  - Matematičeskie zametki
PY  - 2018
SP  - 336
EP  - 345
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a1/
LA  - ru
ID  - MZM_2018_103_3_a1
ER  - 
%0 Journal Article
%A O. V. Besov
%T Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces
%J Matematičeskie zametki
%D 2018
%P 336-345
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a1/
%G ru
%F MZM_2018_103_3_a1
O. V. Besov. Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 336-345. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a1/

[1] O. V. Besov, “Vlozhenie prostranstva Soboleva i svoistva oblasti”, Matem. zametki, 96:3 (2014), 343–349 | DOI | MR | Zbl

[2] O. V. Besov, “Prostranstva funktsii polozhitelnoi gladkosti na neregulyarnykh oblastyakh”, Dokl. AN, 466:2 (2016), 133–136 | DOI | MR | Zbl

[3] O. V. Besov, “Prostranstva funktsii polozhitelnoi gladkosti na neregulyarnykh oblastyakh”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 62–72 | DOI | MR | Zbl

[4] D. A. Labutin, “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 18, Tr. MIAN, 227, Nauka, M., 1999, 170–179 | MR | Zbl

[5] T. Kilpeläinen, J. Malý, “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwendungen, 19:2 (2000), 369–380 | DOI | MR | Zbl

[6] O. V. Besov, “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Matem. sb., 192:3 (2001), 3–26 | DOI | MR | Zbl

[7] O. V. Besov, “Prostranstva funktsii drobnoi gladkosti na neregulyarnoi oblasti”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, MAIK, M., 2010, 31–51 | MR | Zbl

[8] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR | Zbl

[9] O. V. Besov, “Prostranstva funktsii drobnoi gladkosti na neregulyarnoi oblasti”, Matem. zametki, 74:2 (2003), 163–183 | DOI | MR | Zbl

[10] O. V. Besov, “Prostranstva funktsii tipa Lizorkina–Tribelya na neregulyarnoi oblasti”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Tr. MIAN, 260, MAIK, M., 2008, 32–43 | MR | Zbl