Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_2_a8, author = {E. S. Sukhacheva and T. E. Khmyleva}, title = {On a {Homeomorphism} between the {Sorgenfrey} {Line} $S$ and {Its} {Modification~}$S_P$}, journal = {Matemati\v{c}eskie zametki}, pages = {258--272}, publisher = {mathdoc}, volume = {103}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a8/} }
TY - JOUR AU - E. S. Sukhacheva AU - T. E. Khmyleva TI - On a Homeomorphism between the Sorgenfrey Line $S$ and Its Modification~$S_P$ JO - Matematičeskie zametki PY - 2018 SP - 258 EP - 272 VL - 103 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a8/ LA - ru ID - MZM_2018_103_2_a8 ER -
E. S. Sukhacheva; T. E. Khmyleva. On a Homeomorphism between the Sorgenfrey Line $S$ and Its Modification~$S_P$. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 258-272. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a8/
[1] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl
[2] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl
[3] V. A. Chatyrko, Y. Hattori, “A poset of topologies on the set of real numbers”, Comment. Math. Univ. Carolin., 54:2 (2013), 189–196 | MR | Zbl
[4] E. C. Sukhacheva, T. E. Khmyleva, “O nekotorykh lineino uporyadochennykh topologicheskikh prostranstvakh, gomeomorfnykh pryamoi Zorgenfreya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2014, no. 5(31), 63–68
[5] T. E. Khmylëva, “O gomeomorfizme pryamoi Zorgefreya i ee modifikatsii $S_{\mathcal{Q}}$”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 1 (39), 53–56 | DOI
[6] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR | Zbl
[7] V. V. Tkachuk, A $C_p$-Theory Problems Book. Topological and Function Spaces, Springer, New York, 2011 | MR
[8] E. K. van Douwen, “Retracts of the Sorgenfrey line”, Compositio Math., 38:2 (1979), 155–161 | MR | Zbl
[9] D. K. Burke, J. T. Moore, “Subspaces of the Sorgenfrey line”, Topology Appl., 90:1-3 (1998), 57–68 | DOI | MR | Zbl