On a Homeomorphism between the Sorgenfrey Line $S$ and Its Modification~$S_P$
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 258-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological space $S_P$, which is a modification of the Sorgenfrey line $S$, is considered. It is defined as follows: if $x\in P\subset S$, then a base of neighborhoods of $x$ is the family $\{[x,x+\varepsilon),\,\varepsilon>0\}$ of half-open intervals, and if $x\in S\setminus P$, then a base of neighborhoods of $x$ is the family $\{(x-\varepsilon,x],\,\varepsilon>0\}$. A necessary and sufficient condition under which the space $S_P$ is homeomorphic to $S$ is obtained. Similar questions were considered by V. A. Chatyrko and I. Hattori, who defined the neighborhoods of $x \in P$ to be the same as in the natural topology of the real line.
Keywords: Sorgenfrey line, nowhere dense set, homeomorphism, ordinal, spaces of the first and second category, $F_\sigma$-set, $G_\delta$-set.
Mots-clés : point of condensation, Baire space
@article{MZM_2018_103_2_a8,
     author = {E. S. Sukhacheva and T. E. Khmyleva},
     title = {On a {Homeomorphism} between the {Sorgenfrey} {Line} $S$ and {Its} {Modification~}$S_P$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {258--272},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a8/}
}
TY  - JOUR
AU  - E. S. Sukhacheva
AU  - T. E. Khmyleva
TI  - On a Homeomorphism between the Sorgenfrey Line $S$ and Its Modification~$S_P$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 258
EP  - 272
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a8/
LA  - ru
ID  - MZM_2018_103_2_a8
ER  - 
%0 Journal Article
%A E. S. Sukhacheva
%A T. E. Khmyleva
%T On a Homeomorphism between the Sorgenfrey Line $S$ and Its Modification~$S_P$
%J Matematičeskie zametki
%D 2018
%P 258-272
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a8/
%G ru
%F MZM_2018_103_2_a8
E. S. Sukhacheva; T. E. Khmyleva. On a Homeomorphism between the Sorgenfrey Line $S$ and Its Modification~$S_P$. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 258-272. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a8/

[1] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[2] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl

[3] V. A. Chatyrko, Y. Hattori, “A poset of topologies on the set of real numbers”, Comment. Math. Univ. Carolin., 54:2 (2013), 189–196 | MR | Zbl

[4] E. C. Sukhacheva, T. E. Khmyleva, “O nekotorykh lineino uporyadochennykh topologicheskikh prostranstvakh, gomeomorfnykh pryamoi Zorgenfreya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2014, no. 5(31), 63–68

[5] T. E. Khmylëva, “O gomeomorfizme pryamoi Zorgefreya i ee modifikatsii $S_{\mathcal{Q}}$”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 1 (39), 53–56 | DOI

[6] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR | Zbl

[7] V. V. Tkachuk, A $C_p$-Theory Problems Book. Topological and Function Spaces, Springer, New York, 2011 | MR

[8] E. K. van Douwen, “Retracts of the Sorgenfrey line”, Compositio Math., 38:2 (1979), 155–161 | MR | Zbl

[9] D. K. Burke, J. T. Moore, “Subspaces of the Sorgenfrey line”, Topology Appl., 90:1-3 (1998), 57–68 | DOI | MR | Zbl