Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 248-257
Voir la notice de l'article provenant de la source Math-Net.Ru
The chromatic number of a Euclidean space $\mathbb R^n$ with a forbidden finite set $C$ of points is the least number of colors required to color the points of this space so that no monochromatic set is congruent to $C$. New upper bounds for this quantity are found.
Keywords:
Euclidean Ramsey theory, chromatic number of space.
@article{MZM_2018_103_2_a7,
author = {R. I. Prosanov},
title = {Upper {Bounds} for the {Chromatic} {Numbers} of {Euclidean} {Spaces} with {Forbidden} {Ramsey} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {248--257},
publisher = {mathdoc},
volume = {103},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a7/}
}
R. I. Prosanov. Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 248-257. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a7/