Ultimate Boundedness in the Sense of Poisson of Solutions~to~Systems~of~Differential Equations and Lyapunov Functions
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 223-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of different types of boundedness in the sense of Poisson of solutions to systems of differential equations are introduced. Sufficient conditions are obtained for different types of boundedness of solutions in the sense of Poisson, which are introduced in the paper.
Keywords: boundedness of solutions, boundedness of solutions in the sense of Poisson, Lyapunov function, partial boundedness of solutions, partially controllable initial conditions.
@article{MZM_2018_103_2_a5,
     author = {K. S. Lapin},
     title = {Ultimate {Boundedness} in the {Sense} of {Poisson} of {Solutions~to~Systems~of~Differential} {Equations} and {Lyapunov} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {223--235},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a5/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Ultimate Boundedness in the Sense of Poisson of Solutions~to~Systems~of~Differential Equations and Lyapunov Functions
JO  - Matematičeskie zametki
PY  - 2018
SP  - 223
EP  - 235
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a5/
LA  - ru
ID  - MZM_2018_103_2_a5
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Ultimate Boundedness in the Sense of Poisson of Solutions~to~Systems~of~Differential Equations and Lyapunov Functions
%J Matematičeskie zametki
%D 2018
%P 223-235
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a5/
%G ru
%F MZM_2018_103_2_a5
K. S. Lapin. Ultimate Boundedness in the Sense of Poisson of Solutions~to~Systems~of~Differential Equations and Lyapunov Functions. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 223-235. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a5/

[1] T. Yoshizawa, “Liapunov's function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 | MR | Zbl

[2] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl

[3] K. C. Lapin, “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | MR | Zbl

[4] K. C. Lapin, “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | DOI | MR | Zbl

[5] K. C. Lapin, “Ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 96:3 (2014), 393–404 | DOI | Zbl

[6] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teor. i sist. upravl., 2010, no. 5, 23–31 | MR | Zbl

[7] V. I. Vorotnikov, Yu. G. Martyshenko, “K zadacham chastichnoi ustoichivosti dlya sistem s posledeistviem”, Tr. IMM UrO RAN, 19, no. 1, 2013, 49–58 | MR

[8] V. I. Vorotnikov, Yu. G. Martyshenko, “Ob ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya sistem s posledeistviem”, Matem. zametki, 96:4 (2014), 496–503 | DOI | MR | Zbl

[9] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, URSS, M., 2004 | MR | Zbl