Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_2_a4, author = {G. V. Kalachev and S. Yu. Sadov}, title = {A {Logarithmic} {Inequality}}, journal = {Matemati\v{c}eskie zametki}, pages = {210--222}, publisher = {mathdoc}, volume = {103}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/} }
G. V. Kalachev; S. Yu. Sadov. A Logarithmic Inequality. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 210-222. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/
[1] H. Robbins, “A remark on Stirling's formula”, Amer. Math. Monthly, 62:1 (1955), 26–29 | DOI | MR | Zbl
[2] N. Batir, “Sharp inequalities for factorial $n$”, Proyecciones, 27:1 (2008), 97–102 | DOI | MR | Zbl
[3] N. Batir, M. Cancan, “Sharp inequalities involving the constant $e$ and the sequence $(1+1/n)^n$”, Internat. J. Math. Ed. Sci. Tech., 40:8 (2009), 1101–1109 | DOI | MR | Zbl
[4] B. Akbarpour, L. C. Paulson, “MetiTarski: an automatic theorem prover for real-valued special functions”, J. Automat. Reason., 44:3 (2010), 175–205 | DOI | MR | Zbl
[5] A. S. Podkolzin, Kompyuternoe modelirovanie logicheskikh protsessov. T. 3. Opyt obucheniya reshatelya zadach: matematicheskii analiz, differentsialnye uravneniya i elementarnaya geometriya, MGU, M., 2015 http://intsys.msu.ru/staff/podkolzin/tom3.pdf
[6] J. Sándor, “A note on inequalities for the logarithmic function”, Octogon Math. Magazine, 17:1 (2009), 299–301
[7] F. Topsøe, “Some bounds for the logarithmic function”, Inequality Theory and Applications, V. 4, Nova Sci. Publ., New York, 2007, 137–151 | MR
[8] R. Stenli, Perechislitelnaya kombinatorika, T. 1, Mir, M., 1990 | MR