A Logarithmic Inequality
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 210-222

Voir la notice de l'article provenant de la source Math-Net.Ru

The inequality \begin{equation*} \ln\ln(r-\ln r)+1 \min_{0\le r-1} (\ln x+ x^{-1}\ln(r-x)) \ln\ln(r-\ln(r-2^{-1}\ln r))+1, \end{equation*} where $r>2$, is proved. A combinatorial optimization problem which involves the function to be minimized is described.
Keywords: logarithmic inequality, two-sided estimate, extremal graph.
@article{MZM_2018_103_2_a4,
     author = {G. V. Kalachev and S. Yu. Sadov},
     title = {A {Logarithmic} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {210--222},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/}
}
TY  - JOUR
AU  - G. V. Kalachev
AU  - S. Yu. Sadov
TI  - A Logarithmic Inequality
JO  - Matematičeskie zametki
PY  - 2018
SP  - 210
EP  - 222
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/
LA  - ru
ID  - MZM_2018_103_2_a4
ER  - 
%0 Journal Article
%A G. V. Kalachev
%A S. Yu. Sadov
%T A Logarithmic Inequality
%J Matematičeskie zametki
%D 2018
%P 210-222
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/
%G ru
%F MZM_2018_103_2_a4
G. V. Kalachev; S. Yu. Sadov. A Logarithmic Inequality. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 210-222. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/