A Logarithmic Inequality
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 210-222
Voir la notice de l'article provenant de la source Math-Net.Ru
The inequality \begin{equation*} \ln\ln(r-\ln r)+1 \min_{0\le r-1} (\ln x+ x^{-1}\ln(r-x)) \ln\ln(r-\ln(r-2^{-1}\ln r))+1, \end{equation*} where $r>2$, is proved. A combinatorial optimization problem which involves the function to be minimized is described.
Keywords:
logarithmic inequality, two-sided estimate, extremal graph.
@article{MZM_2018_103_2_a4,
author = {G. V. Kalachev and S. Yu. Sadov},
title = {A {Logarithmic} {Inequality}},
journal = {Matemati\v{c}eskie zametki},
pages = {210--222},
publisher = {mathdoc},
volume = {103},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/}
}
G. V. Kalachev; S. Yu. Sadov. A Logarithmic Inequality. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 210-222. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a4/