Lower Bounds for the Degree of a Branched Covering of a Manifold
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 186-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding new lower bounds for the degree of a branched covering of a manifold in terms of the cohomology rings of this manifold is considered. This problem is close to M. Gromov's problem on the domination of manifolds, but it is more delicate. Any branched (finite-sheeted) covering of manifolds is a domination, but not vice versa (even up to homotopy). The theory and applications of the classical notion of the group transfer and of the notion of transfer for branched coverings are developed on the basis of the theory of $n$-homomorphisms of graded algebras. The main result is a lemma imposing conditions on a relationship between the multiplicative cohomology structures of the total space and the base of $n$-sheeted branched coverings of manifolds and, more generally, of Smith–Dold $n$-fold branched coverings. As a corollary, it is shown that the least degree $n$ of a branched covering of the $N$-torus $T^N$ over the product of $k$ $2$-spheres and one $(N-2k)$-sphere for $N\ge 4k+2$ satisfies the inequality $n\ge N-2k$, while the Berstein–Edmonds well-known 1978 estimate gives only $n\ge N/(k+1)$.
Keywords: branched coverings of manifolds, transfer, cohomology of groups.
@article{MZM_2018_103_2_a2,
     author = {D. V. Gugnin},
     title = {Lower {Bounds} for the {Degree} of a {Branched} {Covering} of a {Manifold}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {186--195},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a2/}
}
TY  - JOUR
AU  - D. V. Gugnin
TI  - Lower Bounds for the Degree of a Branched Covering of a Manifold
JO  - Matematičeskie zametki
PY  - 2018
SP  - 186
EP  - 195
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a2/
LA  - ru
ID  - MZM_2018_103_2_a2
ER  - 
%0 Journal Article
%A D. V. Gugnin
%T Lower Bounds for the Degree of a Branched Covering of a Manifold
%J Matematičeskie zametki
%D 2018
%P 186-195
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a2/
%G ru
%F MZM_2018_103_2_a2
D. V. Gugnin. Lower Bounds for the Degree of a Branched Covering of a Manifold. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 186-195. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a2/

[1] J. W. Alexander, “Note on Riemann spaces”, Bull. Amer. Math. Soc., 26:8 (1920), 370–372 | DOI | MR | Zbl

[2] A. V. Chernavskii, “Konechnokratnye otkrytye otobrazheniya mnogoobrazii”, Matem. sb., 65 (107):3 (1964), 357–369 | MR | Zbl

[3] I. Berstein, A. L. Edmonds, “The degree and branch set of a branced covering”, Invent. Math., 45:3 (1978), 213–220 | DOI | MR | Zbl

[4] L. Smith, “Transfer and ramified coverings”, Math. Proc. Cambridge Philos. Soc., 93:3 (1983), 485–493 | DOI | MR | Zbl

[5] A. Dold, “Ramified coverings, orbit projections and symmetric powers”, Math. Proc. Cambridge Philos. Soc., 99:1 (1986), 65–72 | DOI | MR | Zbl

[6] D. V. Gugnin, “Topologicheskie prilozheniya graduirovannykh $n$-gomomorfizmov Frobeniusa”, Tr. MMO, 72, no. 1, MTsNMO, M., 2011, 127–188 | MR | Zbl

[7] V. M. Bukhshtaber, E. G. Ris, “Mnogoznachnye gruppy i $n$-algebry Khopfa”, UMN, 51:4 (310) (1996), 149–150 | DOI | MR | Zbl

[8] V. M. Buchstaber, E. G. Rees, “Multivalued groups, their representations and Hopf algebras”, Transform. Groups, 2:4 (1997), 325–349 | DOI | MR | Zbl

[9] V. M. Bukhshtaber, E. G. Ris, “Koltsa nepreryvnykh funktsii, simmetricheskie proizvedeniya i algebry Frobeniusa”, UMN, 59:1 (355) (2004), 125–144 | DOI | MR | Zbl

[10] V. M. Buchstaber, E. G. Rees, “Frobenius $n$-homomorphisms, transfers and branched coverings”, Math. Proc. Cambridge Philos. Soc., 144:1 (2008), 1–12 | DOI | MR | Zbl