The Method of Lagrange Multipliers for the Class of Subsmooth Mappings
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 316-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : method of Lagrange multipliers
Keywords: strong compact subdifferential, subsmoothness, subsmooth variational Lagrangian, subsmooth form of the inverse and implicit function theorems.
@article{MZM_2018_103_2_a14,
     author = {I. V. Orlov},
     title = {The {Method} of {Lagrange} {Multipliers} for the {Class} of {Subsmooth} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {316--320},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a14/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - The Method of Lagrange Multipliers for the Class of Subsmooth Mappings
JO  - Matematičeskie zametki
PY  - 2018
SP  - 316
EP  - 320
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a14/
LA  - ru
ID  - MZM_2018_103_2_a14
ER  - 
%0 Journal Article
%A I. V. Orlov
%T The Method of Lagrange Multipliers for the Class of Subsmooth Mappings
%J Matematičeskie zametki
%D 2018
%P 316-320
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a14/
%G ru
%F MZM_2018_103_2_a14
I. V. Orlov. The Method of Lagrange Multipliers for the Class of Subsmooth Mappings. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 316-320. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a14/

[1] J. Lafontaine, Integration of Functions with Values in a Banach Space, Springer, New York, 2015

[2] A. C. Chiang, Fundamental Methods of Mathematical Economics, Mc Graw Hill, New York, 1984

[3] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, UMN, 35:6 (216) (1980), 11–46 | MR | Zbl

[4] E. M. Galeev, V. M. Tikhomirov, Optimizatsiya: teoriya, primery, zadachi, Editorial URSS, M., 2000

[5] B. H. Pourciau, Amer. Math. Monthly, 87:6 (1980), 433–452 | DOI | MR | Zbl

[6] D. P. Bertsecas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999 | MR | Zbl

[7] S. Boyd, L. Vanderberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[8] E. Zeidler, Applied Functional Analysis. Main Principles and Their Applications, Springer, New York, 1995 | MR | Zbl

[9] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Springer-Verlag, Berlin, 2006 | MR

[10] A. L. Dontchev, R. T. Rockafellar, Implicit Functions and Solution Mappings. A View from Variational Analysis, Springer, Dordrecht, 2009 | MR | Zbl

[11] I. V. Orlov, F. S. Stonyakin, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 34, RUDN, M., 2009, 121–138 | MR

[12] I. V. Orlov, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 53, RUDN, M., 2014, 64–132

[13] I. V. Orlov, Matem. zametki, 99:4 (2016), 631–634 | DOI | MR | Zbl

[14] I. V. Orlov, S. I. Smirnova, Eurasian Math. J., 6:4 (2015), 44–58 | MR

[15] V. D. Stepanov, Matem. zametki, 98:6 (2015), 907–922 | DOI | MR | Zbl

[16] M. L. Goldman, Matem. zametki, 100:1 (2016), 30–46 | DOI | MR | Zbl