On the $K$-Functional for the Mixed Generalized Modulus of Smoothness
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 312-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: mixed modulus of smoothness, $K$-functional.
@article{MZM_2018_103_2_a13,
     author = {N. V. Omel'chenko},
     title = {On the $K${-Functional} for the {Mixed} {Generalized} {Modulus} of {Smoothness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {312--315},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a13/}
}
TY  - JOUR
AU  - N. V. Omel'chenko
TI  - On the $K$-Functional for the Mixed Generalized Modulus of Smoothness
JO  - Matematičeskie zametki
PY  - 2018
SP  - 312
EP  - 315
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a13/
LA  - ru
ID  - MZM_2018_103_2_a13
ER  - 
%0 Journal Article
%A N. V. Omel'chenko
%T On the $K$-Functional for the Mixed Generalized Modulus of Smoothness
%J Matematičeskie zametki
%D 2018
%P 312-315
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a13/
%G ru
%F MZM_2018_103_2_a13
N. V. Omel'chenko. On the $K$-Functional for the Mixed Generalized Modulus of Smoothness. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 312-315. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a13/

[1] K. V. Runovskii, N. V. Omelchenko, Matem. zametki, 100:3 (2016), 421–432 | DOI | MR | Zbl

[2] K. V. Runovskii, Matem. sb., 208:2 (2017), 70–87 | DOI | MR

[3] K. V. Runovskii, Priblizhenie semeistvami lineinykh polinomialnykh operatorov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 2010

[4] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993 | MR | Zbl

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[6] M. K. Potapov, Math. Balkanica, 2 (1972), 183–198 | MR | Zbl

[7] K. V. Runovskii, Nekotorye voprosy teorii priblizhenii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1990

[8] M. K. Potapov, B. V. Simonov, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2014, no. 6, 31–40 | MR | Zbl

[9] V. Hristov, K. Ivanov, Math. Balkanica (N.S.), 4:3 (1990), 236–257 | MR | Zbl