Best Polynomial Approximations and Widths of Classes of Functions in the Space~$L_2$
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 307-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: best polynomial approximation, Fourier series, $(\psi,\beta)$-derivative, generalized modulus of continuity, $n$-width.
@article{MZM_2018_103_2_a12,
     author = {S. B. Vakarchuk},
     title = {Best {Polynomial} {Approximations} and {Widths} of {Classes} of {Functions} in the {Space~}$L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {307--311},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a12/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Best Polynomial Approximations and Widths of Classes of Functions in the Space~$L_2$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 307
EP  - 311
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a12/
LA  - ru
ID  - MZM_2018_103_2_a12
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Best Polynomial Approximations and Widths of Classes of Functions in the Space~$L_2$
%J Matematičeskie zametki
%D 2018
%P 307-311
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a12/
%G ru
%F MZM_2018_103_2_a12
S. B. Vakarchuk. Best Polynomial Approximations and Widths of Classes of Functions in the Space~$L_2$. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 307-311. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a12/

[1] H. S. Shapiro, Acta Math., 120 (1968), 279–292 | DOI | MR | Zbl

[2] J. Boman, H. S. Shapiro, Ark. Mat., 9 (1971), 91–116 | DOI | MR | Zbl

[3] A. G. Babenko, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Tr. IMM UrO RAN, 7, no. 1, 2001, 30–46 | MR | Zbl

[4] S. N. Vasilev, Dokl. AN, 385:1 (2002), 11–14 | MR | Zbl

[5] A. I. Kozko, A. V. Rozhdestvenskii, Matem. zametki, 73:5 (2003), 783–788 | DOI | MR | Zbl

[6] K. V. Runovskii, Matem. zametki, 95:6 (2014), 899–910 | DOI | MR

[7] V. I. Ivanov, Kha Tkhi Min Khue, Tr. IMM UrO RAN, 20, no. 1, 2014, 109–118 | MR

[8] D. V. Gorbachev, Tr. IMM UrO RAN, 20, no. 1, 2014, 83–91 | MR

[9] S. B. Vakarchuk, Ukr. Math. J., 68:6 (2016), 823–848 | DOI | MR

[10] S. B. Vakarchuk, Ukr. Math. J., 68:8 (2017), 1165–1183 | DOI | MR

[11] S. B. Vakarchuk, Ukr. Math. J., 68:10 (2017), 1495–1518 | DOI | MR

[12] S. Yu. Artamonov, Matem. zametki, 99:6 (2016), 933–936 | DOI | MR | Zbl

[13] K. Runovski, H-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, Friedrich-Schiller-Universität Jena, Jena, 2011

[14] A. I. Stepanets, Izv. AN SSSR. Ser. matem., 50:1 (1986), 101–136 | MR | Zbl

[15] A. I. Stepanets, Metody teorii priblizhenii. I, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl