An Analog of the Brown--Schreiber--Taylor Theorem for Weighted Hyperbolic Shifts
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 172-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, using a development of the technique of transmutation mappings, we obtain the first weighted analog of the well-known Brown–Schreiber–Taylor theorem on the eigenvalues of the Laplacian for corresponding spaces of continuous functio
Keywords: convolution operator, spherical functions, spherical transforms.
@article{MZM_2018_103_2_a1,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {An {Analog} of the {Brown--Schreiber--Taylor} {Theorem} for {Weighted} {Hyperbolic} {Shifts}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {172--185},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - An Analog of the Brown--Schreiber--Taylor Theorem for Weighted Hyperbolic Shifts
JO  - Matematičeskie zametki
PY  - 2018
SP  - 172
EP  - 185
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a1/
LA  - ru
ID  - MZM_2018_103_2_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T An Analog of the Brown--Schreiber--Taylor Theorem for Weighted Hyperbolic Shifts
%J Matematičeskie zametki
%D 2018
%P 172-185
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a1/
%G ru
%F MZM_2018_103_2_a1
V. V. Volchkov; Vit. V. Volchkov. An Analog of the Brown--Schreiber--Taylor Theorem for Weighted Hyperbolic Shifts. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 172-185. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a1/

[1] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer, Dordrecht, 1992, 185–194 | MR | Zbl

[2] L. Zalcman, “Supplementary bibliography to "A bibliographic survey of the Pompeiu problem”, Radon Transform and Tomography, Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | DOI | MR | Zbl

[3] K. A. Berenstein, D. Struppa, “Kompleksnyi analiz i uravneniya v svertkakh”, Kompleksnyi analiz – mnogie peremennye – 5, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 54, VINITI, M., 1989, 5–111 | MR | Zbl

[4] V. V. Volchkov, Integral Geometry and Convolution Equations, Dordrecht, Kluwer Acad. Publ., 2003 | MR | Zbl

[5] V. V. Volchkov, Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009 | MR | Zbl

[6] V. V. Volchkov, Vit. V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl

[7] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | DOI | MR | Zbl

[8] S. C. Bagchi, A. Sitaram, “Spherical mean periodic functions on semisimple Lie groups”, Pacific J. Math., 84:2 (1979), 241–250 | DOI | MR | Zbl

[9] S. C. Bagchi, A. Sitaram, “The Pompeiu problem revisited”, Enseign. Math. (2), 36:2 (1990), 67–91 | MR | Zbl

[10] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | MR | Zbl

[11] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[12] N. Peyerimhoff, E. Samiou, “Spherical spectral synthesis and two-radius theorems on Damek–Ricci spaces”, Ark. Mat., 48:1 (2010), 131–147 | DOI | MR | Zbl

[13] S. Thangavelu, “Mean periodic functions on phase space and the Pompeiu problem with a twist”, Ann. Inst. Fourier (Grenoble), 45:4 (1995), 1007–1035 | DOI | MR | Zbl

[14] V. V. Volchkov, Vit. V. Volchkov, “Uravneniya svertki na mnogomernykh oblastyakh i redutsirovannoi gruppe Geizenberga”, Matem. sb., 199:8 (2008), 29–60 | DOI | MR | Zbl

[15] V. V. Volchkov, Vit. V. Volchkov, “Spektralnyi analiz na gruppe konformnykh avtomorfizmov edinichnogo kruga”, Matem. sb., 207:7 (2016), 57–80 | DOI | MR | Zbl

[16] C. A. Berenstein, D. Pascuas, “Morera and mean-value type theorems in the hyperbolic disk”, Israel J. Math., 86:1-3 (1994), 61–106 | DOI | MR | Zbl

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl

[18] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1987 | MR | Zbl

[19] L. Schwartz, “Théorie générale des fonctions moyenne-périodique”, Ann. of Math. (2), 48 (1947), 857–929 | DOI | MR | Zbl

[20] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspects and Applications, D. Reidel Publ., Dordrecht, 1984, 1–85 | MR | Zbl

[21] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl

[22] S. Helgason, Integral Geometry and Radon Transforms, Springer, New York, 2011 | MR | Zbl