On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 163-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

Balder's well-known existence theorem (1983) for infinite-horizon optimal control problems is extended to the case in which the integral functional is understood as an improper integral. Simultaneously, the condition of strong uniform integrability (over all admissible controls and trajectories) of the positive part $\max\{f_0,0\}$ of the utility function (integrand) $f_0$ is relaxed to the requirement that the integrals of $f_0$ over intervals $[T,T']$ be uniformly bounded above by a function $\omega(T,T')$ such that $\omega(T,T')\to 0$ as $T,T'\to\infty$. This requirement was proposed by A.V. Dmitruk and N.V. Kuz'kina (2005); however, the proof in the present paper does not follow their scheme, but is instead derived in a rather simple way from the auxiliary results of Balder himself. An illustrative example is also given.
Keywords: optimal control, existence theorem, infinite horizon.
@article{MZM_2018_103_2_a0,
     author = {K. O. Besov},
     title = {On {Balder's} {Existence} {Theorem} for {Infinite-Horizon} {Optimal} {Control} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a0/}
}
TY  - JOUR
AU  - K. O. Besov
TI  - On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems
JO  - Matematičeskie zametki
PY  - 2018
SP  - 163
EP  - 171
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a0/
LA  - ru
ID  - MZM_2018_103_2_a0
ER  - 
%0 Journal Article
%A K. O. Besov
%T On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems
%J Matematičeskie zametki
%D 2018
%P 163-171
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a0/
%G ru
%F MZM_2018_103_2_a0
K. O. Besov. On Balder's Existence Theorem for Infinite-Horizon Optimal Control Problems. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a0/

[1] E. J. Balder, “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95:1 (1983), 195–213 | DOI | MR | Zbl

[2] A. V. Dmitruk, N. V. Kuzkina, “Teorema suschestvovaniya v zadache optimalnogo upravleniya na beskonechnom intervale vremeni”, Matem. zametki, 78:4 (2005), 503–518 ; “Письмо в редакцию”, Матем. заметки, 80:2 (2006), 320 | DOI | MR | Zbl | DOI | MR

[3] E. J. Balder, “Lower semicontinuity of integral functionals with nonconvex integrands by relaxation-compactification”, SIAM J. Control Optim., 19:4 (1981), 533–542 | DOI | MR | Zbl

[4] D. Bogusz, “On the existence of a classical optimal solution and of an almost strongly optimal solution for an infinite-horizon control problem”, J. Optim. Theory Appl., 156:3 (2013), 650–682 | DOI | MR | Zbl

[5] S. M. Aseev, “Suschestvovanie optimalnogo upravleniya v zadachakh na beskonechnom intervale vremeni s neogranichennym mnozhestvom ogranichenii na upravleniya”, Tr. IMM UrO RAN, 22, no. 2, 2016, 18–27 | DOI | MR

[6] V. Lykina, “An existence theorem for a class of infinite horizon optimal control problems”, J. Optim. Theory Appl., 169:1 (2016), 50–73 | DOI | MR | Zbl

[7] S. M. Aseev, K. O. Besov, A. V. Kryazhimskii, “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, UMN, 67:2 (404) (2012), 3–64 | DOI | MR | Zbl

[8] S. M. Aseev, “Sopryazhennye peremennye i mezhvremennye tseny v zadachakh optimalnogo upravleniya na beskonechnom intervale vremeni”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 239–253 | DOI | Zbl

[9] S. M. Aseev, “Optimizatsiya dinamiki upravlyaemoi sistemy pri nalichii faktorov riska”, Tr. IMM UrO RAN, 23, no. 1, 2017, 27–42 | DOI

[10] K. O. Besov, “O neobkhodimykh usloviyakh optimalnosti dlya zadach ekonomicheskogo rosta s beskonechnym gorizontom i lokalno neogranichennoi funktsiei mgnovennoi poleznosti”, Funktsionalnye prostranstva i smezhnye voprosy analiza, Tr. MIAN, 284, MAIK, M., 2014, 56–88 | DOI | Zbl

[11] K. O. Besov, “Zadacha optimalnogo endogennogo rosta s ischerpaemymi resursami i vozmozhnostyu tekhnologicheskogo skachka”, Optimalnoe upravlenie, Tr. MIAN, 291, MAIK, M., 2015, 56–68 | DOI | Zbl