On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 111-119

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that Givental's toric Landau–Ginzburg models for Fano complete intersections admit Calabi–Yau compactifications. We give an alternative proof of this fact. As a consequence of this proof, we obtain a description of the fibers over infinity of the compactified toric Landau–Ginzburg models.
Mots-clés : Calabi–Yau compactification
Keywords: toric Landau–Ginzburg model, complete intersection.
@article{MZM_2018_103_1_a9,
     author = {V. V. Przyjalkowski},
     title = {On the {Calabi--Yau} {Compactifications} of {Toric} {Landau--Ginzburg} {Models} for {Fano} {Complete} {Intersections}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {111--119},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a9/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections
JO  - Matematičeskie zametki
PY  - 2018
SP  - 111
EP  - 119
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a9/
LA  - ru
ID  - MZM_2018_103_1_a9
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections
%J Matematičeskie zametki
%D 2018
%P 111-119
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a9/
%G ru
%F MZM_2018_103_1_a9
V. V. Przyjalkowski. On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 111-119. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a9/