On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 111-119
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that Givental's toric Landau–Ginzburg models for Fano complete intersections admit Calabi–Yau compactifications. We give an alternative proof of this fact. As a consequence of this proof, we obtain a description of the fibers over infinity of the compactified toric Landau–Ginzburg models.
Mots-clés :
Calabi–Yau compactification
Keywords: toric Landau–Ginzburg model, complete intersection.
Keywords: toric Landau–Ginzburg model, complete intersection.
@article{MZM_2018_103_1_a9,
author = {V. V. Przyjalkowski},
title = {On the {Calabi--Yau} {Compactifications} of {Toric} {Landau--Ginzburg} {Models} for {Fano} {Complete} {Intersections}},
journal = {Matemati\v{c}eskie zametki},
pages = {111--119},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a9/}
}
TY - JOUR AU - V. V. Przyjalkowski TI - On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections JO - Matematičeskie zametki PY - 2018 SP - 111 EP - 119 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a9/ LA - ru ID - MZM_2018_103_1_a9 ER -
V. V. Przyjalkowski. On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 111-119. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a9/