Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_1_a6, author = {S. N. Mishin}, title = {Generalization of the {Lagrange} {Method} to the {Case} of {Second-Order} {Linear} {Differential} {Equations} with {Constant} {Operator} {Coefficients} in {Locally} {Convex} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {75--91}, publisher = {mathdoc}, volume = {103}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/} }
TY - JOUR AU - S. N. Mishin TI - Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces JO - Matematičeskie zametki PY - 2018 SP - 75 EP - 91 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/ LA - ru ID - MZM_2018_103_1_a6 ER -
%0 Journal Article %A S. N. Mishin %T Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces %J Matematičeskie zametki %D 2018 %P 75-91 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/ %G ru %F MZM_2018_103_1_a6
S. N. Mishin. Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 75-91. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/
[1] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl
[2] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl
[3] V. A. Trenogin, “Kraevye zadachi dlya abstraktnykh ellipticheskikh uravnenii”, Dokl. AN SSSR, 170:5 (1966), 1028–1031 | MR | Zbl
[4] V. M. Millionschikov, “K teorii differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 57 (99):4 (1962), 385–406 | MR | Zbl
[5] K. Yosida, “Time dependent evolution equations in locally convex space”, Math. Ann., 162 (1965), 83–86 | DOI | MR | Zbl
[6] A. N. Godunov, “O lineinykh differentsialnykh uravneniyakh v lokalno vypuklykh prostranstvakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1974, no. 5, 31–39 | MR | Zbl
[7] Ya. V. Radyno, “Lineinye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh. II. Svoistva reshenii”, Differents. uravneniya, 13:9 (1977), 1615–1624 | MR | Zbl
[8] Ya. V. Radyno, Lineinye uravneniya i bornologiya, Belorusskii gos. un-t, Mn., 1982 | MR | Zbl
[9] S. G. Lobanov, “O razreshimosti lineinykh obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1980, no. 2, 3–7 | MR | Zbl
[10] S. A. Shkarin, “Neskolko rezultatov o razreshimosti obyknovennykh lineinykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 181:9 (1990), 1183–1195 | Zbl
[11] V. P. Gromov, “Analiticheskie resheniya differentsialno-operatornykh uravnenii v lokalno vypuklykh prostranstvakh”, Dokl. AN, 394:3 (2004), 305–308 | MR | Zbl
[12] H. A. Aksenov, Primenenie teorii poryadka i tipa operatora v lokalno vypuklykh prostranstvakh k issledovaniyu analiticheskikh zadach dlya differentsialno-operatornykh uravnenii, Dis. $\dots$ kand. fiz.-matem. nauk, Orel, 2011
[13] H. A. Aksenov, “Kraevaya zadacha dlya differentsialno-operatornogo uravneniya pervogo poryadka v lokalno vypuklom prostranstve”, Izv. vuzov. Matem., 2011, no. 2, 3–15 | MR
[14] S. H. Mishin, “Ob odnom vide differentsialno-operatornykh uravnenii s peremennymi koeffitsientami”, Vestn. RUDN. Ser. Matem., inform., fiz., 2015, no. 1, 3–14
[15] S. H. Mishin, “Odnorodnye differentsialno-operatornye uravneniya v lokalno vypuklykh prostranstvakh”, Izv. vuzov. Matem., 2017, no. 1, 26–43
[16] V. P. Gromov, S. N. Mishin, S. V. Panyushkin, Operatory konechnogo poryadka i differentsialno-operatogrnye uravneniya, Orlovskii gos. un-t, Orel, 2009
[17] S. H. Mishin, “O poryadke i tipe operatora”, Dokl. AN, 381:3 (2001), 309–312 | MR | Zbl
[18] S. H. Mishin, “Svyaz kharakteristik posledovatelnosti operatorov s bornologicheskoi skhodimostyu”, Vestn. RUDN. Ser. Matem., inform., fiz., 2010, no. 4, 26–34
[19] S. H. Mishin, “O kharakteristikakh rosta operatornoznachnykh funktsii”, Ufimsk. matem. zhurn., 5:1 (2013), 112–124 | MR
[20] Ya. V. Radyno, “Lineinye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh. I. Regulyarnye operatory i ikh svoistva”, Differents. uravneniya, 13:8 (1977), 1402–1410 | MR | Zbl
[21] V. P. Kondakov, L. V. Runov, V. E. Kovalchuk, “Bornologii i estestvennoe rasshirenie klassov regulyarnykh elementov v algebrakh operatorov”, Vladikavk. matem. zhurn., 8:3 (2006), 29–39 | MR | Zbl
[22] L. V. Kantopovich, G. P. Akilov, Funktsionalnyi analiz v nopmipovannykh ppostpanstvakh, Fizmatgiz, M., 1959 | MR | Zbl
[23] A. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl
[24] I. F. Krasichkov, “Polnota v prostranstvakh kompleksnoznachnykh funktsii, opisyvaemykh povedeniem modulya”, Matem. sb., 68 (110):1 (1965), 26–57 | MR | Zbl
[25] I. F. Krasichkov, “O zamknutykh idealakh v lokalno-vypuklykh algebrakh tselykh funktsii”, Izv. AN SSSR. Ser. matem., 31:1 (1967), 37–60 | MR | Zbl
[26] S. H. Mishin, “Invariantnost poryadka i tipa posledovatelnosti operatorov”, Matem. zametki, 100:3 (2016), 399–409 | DOI | MR | Zbl