Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 75-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Lagrange method for linear inhomogeneous differential equations is generalized to the case of second-order equations with constant operator coefficients in locally convex spaces. The solutions are expressed in terms of uniformly convergent functional vector-valued series generated by a pair of elements of a locally convex space. Sufficient conditions for the continuous dependence of solutions on the generating pair are obtained. The solution of the Cauchy problem for the equations under consideration is also obtained and conditions for its existence and uniqueness are given. In addition, under certain conditions, the so-called general solution of the equations (a function of most general form from which any particular solution can be derived) is obtained. The study is carried out using the characteristics (order and type) of an operator and of a sequence of operators. Also, the convergence of operator series with respect to equicontinuous bornology is used.
Keywords: locally convex space, order and type of an operator, operator-differential equation, equicontinuous bornology, bornological convergence, vector-valued function.
@article{MZM_2018_103_1_a6,
     author = {S. N. Mishin},
     title = {Generalization of the {Lagrange} {Method} to the {Case} of {Second-Order} {Linear} {Differential} {Equations} with {Constant} {Operator} {Coefficients} in {Locally} {Convex} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {75--91},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/}
}
TY  - JOUR
AU  - S. N. Mishin
TI  - Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces
JO  - Matematičeskie zametki
PY  - 2018
SP  - 75
EP  - 91
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/
LA  - ru
ID  - MZM_2018_103_1_a6
ER  - 
%0 Journal Article
%A S. N. Mishin
%T Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces
%J Matematičeskie zametki
%D 2018
%P 75-91
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/
%G ru
%F MZM_2018_103_1_a6
S. N. Mishin. Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 75-91. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a6/

[1] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[2] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl

[3] V. A. Trenogin, “Kraevye zadachi dlya abstraktnykh ellipticheskikh uravnenii”, Dokl. AN SSSR, 170:5 (1966), 1028–1031 | MR | Zbl

[4] V. M. Millionschikov, “K teorii differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 57 (99):4 (1962), 385–406 | MR | Zbl

[5] K. Yosida, “Time dependent evolution equations in locally convex space”, Math. Ann., 162 (1965), 83–86 | DOI | MR | Zbl

[6] A. N. Godunov, “O lineinykh differentsialnykh uravneniyakh v lokalno vypuklykh prostranstvakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1974, no. 5, 31–39 | MR | Zbl

[7] Ya. V. Radyno, “Lineinye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh. II. Svoistva reshenii”, Differents. uravneniya, 13:9 (1977), 1615–1624 | MR | Zbl

[8] Ya. V. Radyno, Lineinye uravneniya i bornologiya, Belorusskii gos. un-t, Mn., 1982 | MR | Zbl

[9] S. G. Lobanov, “O razreshimosti lineinykh obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1980, no. 2, 3–7 | MR | Zbl

[10] S. A. Shkarin, “Neskolko rezultatov o razreshimosti obyknovennykh lineinykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 181:9 (1990), 1183–1195 | Zbl

[11] V. P. Gromov, “Analiticheskie resheniya differentsialno-operatornykh uravnenii v lokalno vypuklykh prostranstvakh”, Dokl. AN, 394:3 (2004), 305–308 | MR | Zbl

[12] H. A. Aksenov, Primenenie teorii poryadka i tipa operatora v lokalno vypuklykh prostranstvakh k issledovaniyu analiticheskikh zadach dlya differentsialno-operatornykh uravnenii, Dis. $\dots$ kand. fiz.-matem. nauk, Orel, 2011

[13] H. A. Aksenov, “Kraevaya zadacha dlya differentsialno-operatornogo uravneniya pervogo poryadka v lokalno vypuklom prostranstve”, Izv. vuzov. Matem., 2011, no. 2, 3–15 | MR

[14] S. H. Mishin, “Ob odnom vide differentsialno-operatornykh uravnenii s peremennymi koeffitsientami”, Vestn. RUDN. Ser. Matem., inform., fiz., 2015, no. 1, 3–14

[15] S. H. Mishin, “Odnorodnye differentsialno-operatornye uravneniya v lokalno vypuklykh prostranstvakh”, Izv. vuzov. Matem., 2017, no. 1, 26–43

[16] V. P. Gromov, S. N. Mishin, S. V. Panyushkin, Operatory konechnogo poryadka i differentsialno-operatogrnye uravneniya, Orlovskii gos. un-t, Orel, 2009

[17] S. H. Mishin, “O poryadke i tipe operatora”, Dokl. AN, 381:3 (2001), 309–312 | MR | Zbl

[18] S. H. Mishin, “Svyaz kharakteristik posledovatelnosti operatorov s bornologicheskoi skhodimostyu”, Vestn. RUDN. Ser. Matem., inform., fiz., 2010, no. 4, 26–34

[19] S. H. Mishin, “O kharakteristikakh rosta operatornoznachnykh funktsii”, Ufimsk. matem. zhurn., 5:1 (2013), 112–124 | MR

[20] Ya. V. Radyno, “Lineinye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh. I. Regulyarnye operatory i ikh svoistva”, Differents. uravneniya, 13:8 (1977), 1402–1410 | MR | Zbl

[21] V. P. Kondakov, L. V. Runov, V. E. Kovalchuk, “Bornologii i estestvennoe rasshirenie klassov regulyarnykh elementov v algebrakh operatorov”, Vladikavk. matem. zhurn., 8:3 (2006), 29–39 | MR | Zbl

[22] L. V. Kantopovich, G. P. Akilov, Funktsionalnyi analiz v nopmipovannykh ppostpanstvakh, Fizmatgiz, M., 1959 | MR | Zbl

[23] A. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[24] I. F. Krasichkov, “Polnota v prostranstvakh kompleksnoznachnykh funktsii, opisyvaemykh povedeniem modulya”, Matem. sb., 68 (110):1 (1965), 26–57 | MR | Zbl

[25] I. F. Krasichkov, “O zamknutykh idealakh v lokalno-vypuklykh algebrakh tselykh funktsii”, Izv. AN SSSR. Ser. matem., 31:1 (1967), 37–60 | MR | Zbl

[26] S. H. Mishin, “Invariantnost poryadka i tipa posledovatelnosti operatorov”, Matem. zametki, 100:3 (2016), 399–409 | DOI | MR | Zbl